Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
WKB approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== First classical turning point ==== For <math>U_1 < 0</math> ie. decreasing potential condition or <math>x=x_1 </math> in the given example shown by the figure, we require the exponential function to decay for negative values of x so that wavefunction for it to go to zero. Considering Bairy functions to be the required connection formula, we get:<ref name=":3">{{Cite journal |last1=Ramkarthik |first1=M. S. |last2=Pereira |first2=Elizabeth Louis |date=2021-06-01 |title=Airy Functions Demystified β II |url=https://doi.org/10.1007/s12045-021-1179-z |journal=Resonance |language=en |volume=26 |issue=6 |pages=757β789 |doi=10.1007/s12045-021-1179-z |issn=0973-712X|url-access=subscription }}</ref> <math display="block">\begin{align} \operatorname{Bi}(u) \rightarrow -\frac{1}{\sqrt \pi}\frac{1}{\sqrt[4]{u}} \sin{\left(\frac 2 3 |u|^{\frac 3 2} - \frac \pi 4\right)} \quad \textrm{where,} \quad u \rightarrow -\infty\\ \operatorname{Bi}(u) \rightarrow \frac{1}{\sqrt \pi}\frac{1}{\sqrt[4]{u}} e^{\frac 2 3 u^{\frac 3 2}} \quad \textrm{where,} \quad u \rightarrow +\infty \\ \end{align} </math> We cannot use Airy function since it gives growing exponential behaviour for negative x. When compared to WKB solutions and matching their behaviours at <math>\pm \infty </math>, we conclude: <math>A=-D=N </math>, <math>B=C=0 </math> and <math>\alpha = \frac \pi 4 </math>. Thus, letting some normalization constant be <math>N </math>, the wavefunction is given for increasing potential (with x) as:<ref name=":1" /> <math>\Psi_{\text{WKB}}(x) = \begin{cases} -\frac{N}{\sqrt{|p(x)|}}\exp{(-\frac 1 \hbar \int_{x}^{x_1} |p(x)| dx )} & \text{if } x < x_1\\ \frac{N}{\sqrt{|p(x)|}} \sin{(\frac 1 \hbar \int_{x}^{x_1} |p(x)| dx - \frac \pi 4)} & \text{if } x_2 > x > x_1 \\ \end{cases} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)