Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Young's modulus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== [[Image:SpiderGraph YoungMod.gif|350px|thumb|Influences of selected glass component additions on Young's modulus of a specific base glass]] Young's modulus can vary somewhat due to differences in sample composition and test method. The rate of deformation has the greatest impact on the data collected, especially in [[polymer]]s. The values here are approximate and only meant for relative comparison. {| class="wikitable sortable" style="text-align:center;" |+Approximate Young's modulus for various materials !Material ! data-sort-type="number" |Young's modulus ([[Pascal (unit)|GPa]]) ! data-sort-type="number" |Megapound per square inch ([[Mega-|M]][[Pounds per square inch|psi]])<ref>{{Cite web|title=Unit of Measure Converter|url=http://www.matweb.com/tools/unitconverter.aspx|access-date=May 9, 2021|website=MatWeb}}</ref> !Ref. |- | style="text-align:left;" |[[Aluminium]] (<sub>13</sub>Al) |68 |9.86 |<ref>{{Cite web|title=Aluminum, Al|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0|access-date=May 7, 2021|website=MatWeb}}</ref><ref name=":02">{{Cite book |last=Weast |first=Robert C. |title=[[CRC Handbook of Chemistry and Physics]] |publisher=[[CRC Press]] |year=1981 |isbn=978-0-84-930740-9 |edition=62nd |location=Boca Raton, FL |doi=10.1002/jctb.280500215}}</ref><ref name=":1">{{Cite book|last=Ross|first=Robert B.|title=Metallic Materials Specification Handbook|publisher=[[Chapman & Hall]]|year=1992|isbn=9780412369407|edition=4th|location=London|doi=10.1007/978-1-4615-3482-2}}</ref><ref name=":2">{{Cite book|last1=Nunes|first1=Rafael|url=http://sme.vimaru.edu.vn/sites/sme.vimaru.edu.vn/files/volume_2_-_properties_and_selection_nonf.pdf|title=Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials|last2=Adams|first2=J. H.|last3=Ammons|first3=Mitchell|last4=Avery|first4=Howard S.|last5=Barnhurst|first5=Robert J.|last6=Bean|first6=John C.|last7=Beaudry|first7=B. J.|last8=Berry|first8=David F.|last9=Black|first9=William T.|publisher=[[ASM International]]|year=1990|isbn=978-0-87170-378-1|edition=10th|series=ASM Handbook|display-authors=3}}</ref><ref name=":3">{{Cite book|last=Nayar|first=Alok|title=The Metals Databook|publisher=[[McGraw-Hill]]|year=1997|isbn=978-0-07-462300-8|location=New York, NY}}</ref><ref name=":4">{{Cite book |title=CRC Handbook of Chemistry and Physics|publisher=[[CRC Press]]|year=1999|isbn=978-0-84-930480-4|editor-last=Lide|editor-first=David R.|edition=80th|location=Boca Raton, FL|chapter=Commercial Metals and Alloys}}</ref> |- | style="text-align:left;" |[[Amino acid|Amino-acid]] [[Molecular solid|molecular crystals]] |21–44 |3.05–6.38 |<ref name=":5">{{Cite journal |last1=Azuri |first1=Ido |last2=Meirzadeh |first2=Elena |last3=Ehre |first3=David |last4=Cohen |first4=Sidney R. |last5=Rappe |first5=Andrew M. |last6=Lahav |first6=Meir |last7=Lubomirsky |first7=Igor |last8=Kronik |first8=Leeor |display-authors=3 |date=November 9, 2015 |title=Unusually Large Young's Moduli of Amino Acid Molecular Crystals |url=http://www.sas.upenn.edu/rappegroup/publications/Papers/Azuri15p13566.pdf |journal=[[Angewandte Chemie]] |edition=International |publisher=[[Wiley (publisher)|Wiley]] |volume=54 |issue=46 |pages=13566–13570 |doi=10.1002/anie.201505813 |pmid=26373817 |via=[[PubMed]] |s2cid=13717077}}</ref> |- | style="text-align:left;" |[[Aramid]] (for example, [[Kevlar]]) |70.5–112.4 |10.2–16.3 |<ref>{{Cite web|date=2017|title=Kevlar Aramid Fiber Technical Guide|url=https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf|access-date=May 8, 2021|website=[[DuPont]]}}</ref> |- | style="text-align:left;" |Aromatic peptide-nanospheres |230–275 |33.4–39.9 |<ref>{{Cite journal|last1=Adler-Abramovich|first1=Lihi |last2=Kol|first2=Nitzan |last3=Yanai|first3=Inbal |last4=Barlam|first4=David |last5=Shneck|first5=Roni Z. |last6=Gazit|first6=Ehud |last7=Rousso |first7=Itay|display-authors=3 |date=December 17, 2010 |title=Self-Assembled Organic Nanostructures with Metallic-Like Stiffness |journal=Angewandte Chemie |edition=International|publisher=[[Wiley-VCH]] |publication-date=September 28, 2010 |volume=49 |issue=51 |pages=9939–9942 |doi=10.1002/anie.201002037 |pmid=20878815|s2cid=44873277 }}</ref> |- | style="text-align:left;" |Aromatic peptide-nanotubes |19–27 |2.76–3.92 |<ref>{{Cite journal |last1=Kol |first1=Nitzan |last2=Adler-Abramovich |first2=Lihi |last3=Barlam |first3=David |last4=Shneck |first4=Roni Z. |last5=Gazit |first5=Ehud |last6=Rousso |first6=Itay |display-authors=3 |date=June 8, 2005 |title=Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures |url=https://pubs.acs.org/doi/full/10.1021/nl0505896 |journal=[[Nano Letters]] |location=Israel |publisher=[[American Chemical Society]] |volume=5 |issue=7 |pages=1343–1346 |bibcode=2005NanoL...5.1343K |doi=10.1021/nl0505896 |pmid=16178235 |via=[[ACS Publications]]|url-access=subscription }}</ref><ref>{{Cite journal |last1=Niu |first1=Lijiang |last2=Chen |first2=Xinyong |last3=Allen |first3=Stephanie |last4=Tendler |first4=Saul J. B. |display-authors=3 |date=June 6, 2007 |title=Using the Bending Beam Model to Estimate the Elasticity of Diphenylalanine Nanotubes |url=https://pubs.acs.org/doi/full/10.1021/la7010106 |journal=[[Langmuir (journal)|Langmuir]] |publisher=[[American Chemical Society]] |volume=23 |issue=14 |pages=7443–7446 |doi=10.1021/la7010106 |pmid=17550276 |via=[[ACS Publications]]|url-access=subscription }}</ref> |- | style="text-align:left;" |[[Bacteriophage]] [[capsid]]s |1–3 |0.145–0.435 |<ref>{{cite journal|last1=Ivanovska|first1=Irena L.|last2=de Pablo|first2=Pedro J. |last3=Ibarra |first3=Benjamin |last4=Sgalari |first4=Giorgia |last5=MacKintosh |first5=Fred C. |last6=Carrascosa |first6=José L. |last7=Schmidt |first7=Christoph F. |last8=Wuite |first8=Gijs J. L. |display-authors=3 |date=May 7, 2004 |editor-last=Lubensky |editor-first=Tom C. |title=Bacteriophage capsids: Tough nanoshells with complex elastic properties|journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |publisher=[[The National Academy of Sciences]] |volume=101 |issue=20 |pages=7600–7605 |bibcode=2004PNAS..101.7600I |doi=10.1073/pnas.0308198101|pmc=419652|pmid=15133147|doi-access=free}}</ref> |- | style="text-align:left;" |[[Beryllium]] (<sub>4</sub>Be) |287 |41.6 |<ref>{{Cite book|last1=Foley|first1=James C.|title=Powder Materials: Current Research and Industrial Practices III|last2=Abeln|first2=Stephen P.|last3=Stanek|first3=Paul W.|last4=Bartram|first4=Brian D.|last5=Aikin|first5=Beverly|last6=Vargas|first6=Victor D.|publisher= [[Wiley (publisher)|John Wiley & Sons, Inc.]]|year=2010|isbn=978-1-11-898423-9|editor-last=Marquis|editor-first=Fernand D. S.|location=Hoboken, NJ|pages=263|chapter=An Overview of Current Research and Industrial Practices of be Powder Metallurgy|doi=10.1002/9781118984239.ch32|display-authors=3}}</ref> |- | style="text-align:left;" |[[Bone]], human cortical |14 |2.03 |<ref>{{Cite journal|last1=Rho|first1=Jae Young|last2=Ashman|first2=Richard B.|last3=Turner|first3=Charles H.|date=February 1993|title=Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements |url=https://www.sciencedirect.com/science/article/abs/pii/002192909390042D|journal=Journal of Biomechanics|publisher=[[Elsevier]] |volume=26 |issue=2 |pages=111–119|doi=10.1016/0021-9290(93)90042-d|pmid=8429054|via=[[Elsevier Science Direct]]|url-access=subscription}}</ref> |- | style="text-align:left;" |[[Brass]] |106 |15.4 |<ref>{{Cite web|title=Overview of materials for Brass|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=d3bd4617903543ada92f4c101c2a20e5 |access-date=May 7, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Bronze]] |112 |16.2 |<ref>{{Cite web|title=Overview of materials for Bronze|url=http://www.matweb.com/search/datasheet.aspx?MatGUID=66575ff2cd5249c49d76df15b47dbca4|access-date=May 7, 2021 |website=MatWeb}}</ref> |- | style="text-align:left;" |[[Carbon nitride]] (CN<sub>2</sub>) |822 |119 |<ref>{{Cite journal |last1=Chowdhury |first1=Shafiul |last2=Laugier |first2=Michael T. |last3=Rahman |first3=Ismet Zakia |date=April–August 2004 |title=Measurement of the mechanical properties of carbon nitride thin films from the nanoindentation loading curve |journal=[[Diamond and Related Materials]] |volume=13 |issue=4–8 |pages=1543–1548 |bibcode=2004DRM....13.1543C |doi=10.1016/j.diamond.2003.11.063 |via=[[Elsevier Science Direct]]}}</ref> |- | style="text-align:left;" |[[Carbon-fiber-reinforced polymers|Carbon-fiber-reinforced plastic]] (CFRP), 50/50 fibre/matrix, biaxial fabric |30–50 |4.35–7.25 |<ref>{{cite web|last=Summerscales|first=John|date=September 11, 2019|title=Composites Design and Manufacture (Plymouth University teaching support materials)|url=https://www.fose1.plymouth.ac.uk/sme/MATS347/MATS347A2%20E-G-nu.htm#E|access-date=May 8, 2021 |website=Advanced Composites Manufacturing Centre|publisher=[[University of Plymouth]]}}</ref> |- | style="text-align:left;" |[[Carbon-fiber-reinforced polymers|Carbon-fiber-reinforced plastic]] (CFRP), 70/30 fibre/matrix, unidirectional, along fibre |181 |26.3 |<ref>{{Cite web|last=Kopeliovich|first=Dmitri|date=June 3, 2012|title=Epoxy Matrix Composite reinforced by 70% carbon fibers |url=http://www.substech.com/dokuwiki/doku.php?id=epoxy_matrix_composite_reinforced_by_70_carbon_fibers|access-date=May 8, 2021|website=SubsTech}}</ref> |- | style="text-align:left;" |[[Cobalt-chrome]] (CoCr) |230 |33.4 |<ref>{{Cite book|last1=Bose|first1=Susmita|title=Materials for Bone Disorders|last2=Banerjee|first2=Dishary|last3=Bandyopadhyay|first3=Amit|publisher=[[Academic Press]]|year=2016|isbn=978-0-12-802792-9|editor-last=Bose|editor-first=Susmita|pages=1–27|chapter=Introduction to Biomaterials and Devices for Bone Disorders|doi=10.1016/B978-0-12-802792-9.00001-X|editor-last2=Bandyopadhyay|editor-first2=Amit}}</ref> |- | style="text-align:left;" |[[Copper]] (Cu), annealed |110 |16 |<ref>{{Cite web|title=Copper, Cu; Annealed|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e|access-date=May 9, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Diamond]] (C), synthetic |1050–1210 |152–175 |<ref>{{Cite book|title=Synthetic Diamond: Emerging CVD Science and Technology|publisher= [[Wiley (publisher)|Wiley]] |year=1994 |isbn=978-0-47-153589-8|editor-last=Spear|editor-first=Karl E.|pages=315|issn=0275-0171|editor-last2=Dismukes|editor-first2=John P.}}</ref> |- | style="text-align:left;" |[[Diatom]] [[frustule]]s, largely [[Orthosilicic acid|silicic acid]] |0.35–2.77 |0.051–0.058 |<ref>{{cite journal |last1=Subhash |first1=Ghatu |last2=Yao |first2=Shuhuai |last3=Bellinger |first3=Brent |last4=Gretz |first4=Michael R. |date=January 2005 |title=Investigation of mechanical properties of diatom frustules using nanoindentation |journal=[[Journal of Nanoscience and Nanotechnology]] |publisher=American Scientific Publishers |volume=5 |issue=1 |pages=50–56 |doi=10.1166/jnn.2005.006 |pmid=15762160 |via=[[Ingenta |Ingenta Connect]]}}</ref> |- | style="text-align:left;" |[[Flax]] fiber |58 |8.41 |<ref name=":6">{{Cite journal |last1=Bodros |first1=Edwin |last2=Baley |first2=Christophe |date=May 15, 2008 |title=Study of the tensile properties of stinging nettle fibres (''Urtica dioica'') |journal=[[Materials Letters]] |volume=62 |issue=14 |pages=2143–2145 |citeseerx=10.1.1.299.6908 |doi=10.1016/j.matlet.2007.11.034 |bibcode=2008MatL...62.2143B |via=[[Elsevier Science Direct]]}}</ref> |- | style="text-align:left;" |[[Float glass]] |47.7–83.6 |6.92–12.1 |<ref>{{Cite web|date=February 16, 2001|title=Float glass – Properties and Applications|url=https://www.azom.com/properties.aspx?ArticleID=89|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Fiberglass|Glass-reinforced polyester]] (GRP) |17.2 |2.49 |<ref>{{Cite web|last=Kopeliovich|first=Dmitri|date=March 6, 2012|title=Polyester Matrix Composite reinforced by glass fibers (Fiberglass)|url=http://www.substech.com/dokuwiki/doku.php?id=polyester_matrix_composite_reinforced_by_glass_fibers_fiberglass|access-date=May 7, 2021|website=SubsTech}}</ref> |- | style="text-align:left;" |[[Gold]] |77.2 |11.2 |<ref>{{cite web|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=d2a2119a08904a0fa706e9408cddb88e|title=Gold material property data|website=MatWeb|accessdate=September 8, 2021}}</ref> |- | style="text-align:left;" |[[Graphene]] |1050 |152 |<ref>{{Cite journal|last1=Liu|first1=Fang|last2=Ming|first2=Pingbing|last3=Li|first3=Ju|date=August 28, 2007|title=''Ab initio'' calculation of ideal strength and phonon instability of graphene under tension|url=http://li.mit.edu/A/Papers/07/Liu07.pdf|journal=Physical Review B|publisher=[[American Physical Society]]|volume=76|issue=6|page=064120|doi=10.1103/PhysRevB.76.064120|bibcode=2007PhRvB..76f4120L|via=[[APS Physics]]}}</ref> |- | style="text-align:left;" |[[Hemp]] fiber |35 |5.08 |<ref>{{Cite journal|last1=Saheb|first1=Nabi|last2=Jog|first2=Jyoti|date=October 15, 1999|title=Natural fibre polymer composites: a review|journal=Advances in Polymer Technology|publisher= [[Wiley (publisher)|John Wiley & Sons, Inc.]]|volume=18|issue=4|pages=351–363|doi=10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X|doi-access=free}}</ref> |- | style="text-align:left;" |[[High-density polyethylene]] (HDPE) |0.97–1.38 |0.141–0.2 |<ref>{{Cite web|title=High-Density Polyethylene (HDPE)|url=https://polymerdatabase.com/Commercial%20Polymers/HDPE.html|access-date=May 9, 2021|website=Polymer Database|publisher=Chemical Retrieval on the Web}}</ref> |- | style="text-align:left;" |[[Types of concrete|High-strength concrete]] |30 |4.35 |<ref>{{Cite book|last=Cardarelli|first=François|title=Materials Handbook: A Concise Desktop Reference|publisher= [[Springer Publishing|Springer-Verlag]]|year=2008|isbn=978-3-319-38923-3|edition=2nd|location=London|pages=1421–1439|chapter=Cements, Concrete, Building Stones, and Construction Materials|doi=10.1007/978-3-319-38925-7_15}}</ref> |- | style="text-align:left;" |[[Lead]] (<sub>82</sub>Pb), chemical |13 |1.89 |<ref name=":4" /> |- | style="text-align:left;" |[[Low-density polyethylene]] (LDPE), molded |0.228 |0.0331 |<ref>{{cite web|title=Overview of materials for Low Density Polyethylene (LDPE), Molded|url=http://matweb.com/search/DataSheet.aspx?MatGUID=557b96c10e0843dbb1e830ceedeb35b0|access-date=May 7, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Magnesium alloy]] |45.2 |6.56 |<ref>{{Cite web|title=Overview of materials for Magnesium Alloy|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=4e6a4852b14c4b12998acf2f8316c07c|access-date=May 9, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Medium-density fibreboard|Medium-density fiberboard]] (MDF) |4 |0.58 |<ref>{{cite web|date=May 30, 2020|title=Medium Density Fiberboard (MDF)|url=http://www.makeitfrom.com/data/?material=MDF|access-date=May 8, 2021|website=MakeItFrom}}</ref> |- | style="text-align:left;" |[[Molybdenum]] (Mo), annealed |330 |47.9 |<ref>{{Cite web|title=Molybdenum, Mo, Annealed|url=http://www.matweb.com/search/datasheet.aspx?matguid=ef57c33963404798ad0301a05692312a|access-date=May 9, 2021|website=MatWeb}}</ref><ref name=":02" /><ref name=":1" /><ref name=":2" /><ref name=":3" /><ref name=":4" /> |- | style="text-align:left;" |[[Monel]] |180 |26.1 |<ref name=":4" /> |- | style="text-align:left;" |[[Nacre|Mother-of-pearl]] (largely [[calcium carbonate]]) |70 |10.2 |<ref>{{cite journal|author=Jackson|first1=Andrew P.|last2=Vincent|first2=Julian F. V.|last3=Turner|first3=R. M.|date=September 22, 1988|title=The mechanical design of nacre|journal=Proceedings of the Royal Society B|publisher=[[Royal Society]]|volume=234|issue=1277|pages=415–440|bibcode=1988RSPSB.234..415J|doi=10.1098/rspb.1988.0056|issn=0080-4649|eissn=2053-9193|via= [[Royal Society|The Royal Society Publishing]]|s2cid=135544277}}</ref> |- | style="text-align:left;" |[[Nickel]] (<sub>28</sub>Ni), commercial |200 |29 |<ref name=":4" /> |- | style="text-align:left;" |[[Nylon 66]] |2.93 |0.425 |<ref>{{Cite web|date=2011|title=Nylon® 6/6 (Polyamide)|url=https://www.polytechindustrial.com/products/plastic-stock-shapes/nylon-66|access-date=May 9, 2021|website=Poly-Tech Industrial, Inc.}}</ref> |- | style="text-align:left;" |[[Osmium]] (<sub>76</sub>Os) |525–562 |76.1–81.5 |<ref>{{cite journal|author=Pandey|first1=Dharmendra Kumar|last2=Singh|first2=Devraj|last3=Yadawa|first3=Pramod Kumar|date=April 2, 2009|title=Ultrasonic Study of Osmium and Ruthenium|url=http://www.technology.matthey.com/pdf/91-97-pmr-apr09.pdf|journal=Platinum Metals Review|publisher=[[Johnson Matthey]]|volume=53|issue=4|pages=91–97|doi=10.1595/147106709X430927|access-date=May 7, 2021|via=[[Ingenta Connect]]|doi-access=free}}</ref> |- | style="text-align:left;" |[[Osmium]] [[nitride]] (OsN<sub>2</sub>) |194.99–396.44 |28.3–57.5 |<ref>{{Cite web|last1=Gaillac|first1=Romain|last2=Coudert|first2=François-Xavier|date=July 26, 2020|title=ELATE: Elastic tensor analysis|url=http://progs.coudert.name/elate/mp?query=mp-973935|access-date=May 9, 2021|website=ELATE}}</ref> |- | style="text-align:left;" |[[Polycarbonate]] (PC) |2.2 |0.319 |<ref>{{Cite web|title=Polycarbonate|url=https://designerdata.nl/materials/plastics/thermo-plastics/polycarbonate|access-date=May 9, 2021|website=DesignerData}}</ref> |- | style="text-align:left;" |[[Polyethylene terephthalate]] (PET), unreinforced |3.14 |0.455 |<ref>{{Cite web|title=Overview of materials for Polyethylene Terephthalate (PET), Unreinforced|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=a696bdcdff6f41dd98f8eec3599eaa20|access-date=May 9, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Polypropylene]] (PP), molded |1.68 |0.244 |<ref>{{Cite web|title=Overview of Materials for Polypropylene, Molded|url=http://www.matweb.com/search/DataSheet.aspx?MatGUID=08fb0f47ef7e454fbf7092517b2264b2|access-date=May 9, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Polystyrene]], crystal |2.5–3.5 |0.363–0.508 |<ref>{{Cite web|title=Young's Modulus: Tensile Elasticity Units, Factors & Material Table|url=https://omnexus.specialchem.com/polymer-properties/properties/young-modulus|access-date=May 9, 2021|website=Omnexus|publisher=SpecialChem}}</ref> |- | style="text-align:left;" |[[Polystyrene]], foam |0.0025–0.007 |0.000363–0.00102 |<ref>{{cite web|date=August 2019|title=Technical Data – Application Recommendations Dimensioning Aids|url=https://www.styrodur.com/portal/streamer?fid=1225078|access-date=May 7, 2021|website=Stryodur|publisher=[[BASF]]}}</ref> |- | style="text-align:left;" |[[Polytetrafluoroethylene]] (PTFE), molded |0.564 |0.0818 |<ref>{{Cite web|title=Overview of materials for Polytetrafluoroethylene (PTFE), Molded|url=http://www.matweb.com/search/datasheet_print.aspx?matguid=4d14eac958e5401a8fd152e1261b6843|access-date=May 9, 2021|website=MatWeb}}</ref> |- | style="text-align:left;" |[[Natural rubber|Rubber]], small strain |0.01–0.1 |0.00145–0.0145 |<ref name=":5" /> |- | style="text-align:left;" |[[Silicon]], single crystal, different directions |130–185 |18.9–26.8 |<ref>{{cite journal|author=Boyd|first1=Euan J.|last2=Uttamchandani|first2=Deepak|year=2012|title=Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon|journal=[[Journal of Microelectromechanical Systems]]|publisher=[[Institute of Electrical and Electronics Engineers]]|volume=21|issue=1|pages=243–249|doi=10.1109/JMEMS.2011.2174415|issn=1057-7157|eissn=1941-0158|via=[[IEEE Xplore]]|s2cid=39025763}}</ref> |- | style="text-align:left;" |[[Silicon carbide]] (SiC) |90–137 |13.1–19.9 |<ref>{{Cite web|date=February 5, 2001|title=Silicon Carbide (SiC) Properties and Applications|url=https://www.azom.com/properties.aspx?ArticleID=42|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |Single-walled [[carbon nanotube]] |data-sort-value="1000"|<math>></math>1000 |data-sort-value="140"|<math>></math>140 |<ref>{{Cite journal |last1=Forró |first1=László |last2=Salvetat |first2=Jean-Paul |last3=Bonard |first3=Jean-Marc |last4=Bacsa |first4=Revathi Ramachandran |last5=Thomson |first5=Neil H. |last6=Garaj |first6=Slaven |last7=Le |first7=Thien-Nga |last8=Gaál |first8=Richard |last9=Kulik |first9=Andrzej J. |last10=Ruzicka |first10=Barbara |last11=Degiorgi |first11=Leonardo |display-authors=3 |date=January 2002 |editor-last=Thorpe |editor-first=Michael F. |editor2-last=Tománek |editor2-first=David |editor2-link=David Tománek |editor3-last=Enbody |editor3-first=Richard J. |title=Electronic and Mechanical Properties of Carbon Nanotubes |url=https://www.researchgate.net/publication/226537355 |journal=Science and Application of Nanotubes |series=Fundamentals Materials Research |location=Boston, MA |publisher=[[Springer Publishing|Springer]] |pages=297–320 |doi=10.1007/0-306-47098-5_22 |isbn=978-0-306-46372-3 |via=[[ResearchGate]]}}</ref><ref>{{cite journal|author=Yang|first1=Yi-Hsuan|last2=Li|first2=Wenzhi|date=January 24, 2011|title=Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy|journal=Applied Physics Letters|publisher=[[American Institute of Physics]]|volume=98|issue=4|page=041901|bibcode=2011ApPhL..98d1901Y|doi=10.1063/1.3546170}}</ref> |- | style="text-align:left;" |[[Steel]], [[A36 steel|A36]] |200 |29 |<ref>{{Cite web|date=July 5, 2012|title=ASTM A36 Mild/Low Carbon Steel|url=https://www.azom.com/article.aspx?ArticleID=6117|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Urtica dioica|Stinging nettle]] fiber |87 |12.6 |<ref name=":6" /> |- | style="text-align:left;" |[[Titanium]] (<sub>22</sub>Ti) |116 |16.8 |<ref>{{Cite web|title=Titanium, Ti|url=http://www.matweb.com/search/datasheet.aspx?MatGUID=66a15d609a3f4c829cb6ad08f0dafc01|access-date=May 7, 2021|website=MatWeb}}</ref><ref>{{Cite book|title=Materials Properties Handbook: Titanium Alloys|publisher=[[ASM International]]|year=1994|isbn=978-0-87-170481-8|editor-last=Boyer|editor-first=Rodney|location=Materials Park, OH|editor-last2=Welsch|editor-first2=Gerhard|editor-last3=Collings|editor-first3=Edward W.}}</ref><ref name=":02" /><ref name=":2" /><ref name=":1" /><ref name=":4" /><ref name=":3" /> |- | style="text-align:left;" |[[Titanium alloy]], Grade 5 |114 |16.5 |<ref>{{Cite web|last=U.S. Titanium Industry Inc.|date=July 30, 2002|title=Titanium Alloys – Ti6Al4V Grade 5|url=https://www.azom.com/article.aspx?ArticleID=1547|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Tooth enamel]], largely [[calcium phosphate]] |83 |12 |<ref>{{cite journal|author=Staines|first1=Michael|last2=Robinson|first2=W. H.|last3=Hood|first3=J. A. A.|date=September 1981|title=Spherical indentation of tooth enamel|journal=Journal of Materials Science|publisher=[[Springer Publishing|Springer]]|volume=16|issue=9|pages=2551–2556|bibcode=1981JMatS..16.2551S|doi=10.1007/bf01113595|via=[[Springer Link]]|s2cid=137704231}}</ref> |- | style="text-align:left;" |[[Tungsten carbide]] (WC) |600–686 |87–99.5 |<ref>{{Cite web|date=January 21, 2002|title=Tungsten Carbide – An Overview|url=https://www.azom.com/properties.aspx?ArticleID=1203|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Wood]], [[Fagus grandifolia|American beech]] |9.5–11.9 |1.38–1.73 |<ref name=":7">{{Cite book|last1=Green|first1=David W.|url=https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf|title=Wood Handbook: Wood as an Engineering Material|last2=Winandy|first2=Jerrold E.|last3=Kretschmann|first3=David E.|publisher=[[Forest Products Laboratory]]|year=1999|location=Madison, WI|pages=4–8|chapter=Mechanical Properties of Wood|archive-url=https://web.archive.org/web/20180720153345/https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf|archive-date=2018-07-20}}</ref> |- | style="text-align:left;" |[[Wood]], [[Prunus serotina|black cherry]] |9–10.3 |1.31–1.49 |<ref name=":7" /> |- | style="text-align:left;" |[[Wood]], [[Acer rubrum|red maple]] |9.6–11.3 |1.39–1.64 |<ref name=":7" /> |- | style="text-align:left;" |[[Wrought iron]] |193 |28 |<ref>{{Cite web|date=August 13, 2013|title=Wrought Iron – Properties and Applications|url=https://www.azom.com/article.aspx?ArticleID=9555|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Yttrium iron garnet]] (YIG), polycrystalline |193 |28 |<ref>{{Cite journal|last1=Chou|first1=Hung-Ming|last2=Case|first2=E. D.|date=November 1988|title=Characterization of some mechanical properties of polycrystalline yttrium iron garnet (YIG) by non-destructive methods|journal=Journal of Materials Science Letters|volume=7|issue=11|pages=1217–1220|doi=10.1007/BF00722341|via=[[SpringerLink]]|s2cid=135957639}}</ref> |- | style="text-align:left;" |[[Yttrium iron garnet]] (YIG), single-crystal |200 |29 |<ref>{{Cite web|title=Yttrium Iron Garnet|url=http://deltroniccrystalindustries.com/deltronic_crystal_products/yttrium_iron_garnet|access-date=May 7, 2021|website=Deltronic Crystal Industries, Inc.|date=December 28, 2012}}</ref> |- | style="text-align:left;" |[[Zinc]] (<sub>30</sub>Zn) |108 |15.7 |<ref>{{Cite web|date=July 23, 2001|title=An Introduction to Zinc|url=https://www.azom.com/properties.aspx?ArticleID=602|access-date=May 9, 2021|website=AZO Materials}}</ref> |- | style="text-align:left;" |[[Zirconium]] (<sub>40</sub>Zr), commercial |95 |13.8 |<ref name=":4" /> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)