Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
3D rotation group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===A note on Lie algebras=== {{Main|Angular momentum operator}} {{see also|Representation theory of SU(2)|Jordan map}} In [[Lie algebra representation]]s, the group SO(3) is compact and simple of rank 1, and so it has a single independent [[Casimir element]], a quadratic invariant function of the three generators which commutes with all of them. The Killing form for the rotation group is just the [[Kronecker delta]], and so this Casimir invariant is simply the sum of the squares of the generators, <math>\boldsymbol{J}_x, \boldsymbol{J}_y, \boldsymbol{J}_z,</math> of the algebra :<math> [\boldsymbol{J}_x, \boldsymbol{J}_y] = \boldsymbol{J}_z, \quad [\boldsymbol{J}_z, \boldsymbol{J}_x] = \boldsymbol{J}_y, \quad [\boldsymbol{J}_y, \boldsymbol{J}_z] = \boldsymbol{J}_x. </math> That is, the Casimir invariant is given by :<math>\boldsymbol{J}^2\equiv \boldsymbol{J}\cdot \boldsymbol{J} =\boldsymbol{J}_x^2+\boldsymbol{J}_y^2+\boldsymbol{J}_z^2 \propto \boldsymbol{I}.</math> For unitary irreducible [[Lie algebra representation|representations]] {{mvar|D<sup>j</sup>}}, the eigenvalues of this invariant are real and discrete, and characterize each representation, which is finite dimensional, of dimensionality <math>2j+1</math>. That is, the eigenvalues of this Casimir operator are :<math>\boldsymbol{J}^2=- j(j+1) \boldsymbol{I}_{2j+1},</math> where {{mvar|j}} is integer or half-integer, and referred to as the [[Spin (physics)|spin]] or [[angular momentum]]. So, the 3 Γ 3 generators '''''L''''' displayed above act on the triplet (spin 1) representation, while the 2 Γ 2 generators below, '''''t''''', act on the [[Spinor|doublet]] ([[spin-1/2]]) representation. By taking [[Kronecker product]]s of {{math|''D''<sup>1/2</sup>}} with itself repeatedly, one may construct all higher irreducible representations {{mvar|D<sup>j</sup>}}. That is, the resulting generators for higher spin systems in three spatial dimensions, for arbitrarily large {{mvar|j}}, can be calculated using these [[spin operator]]s and [[ladder operator]]s. For every unitary irreducible representations {{mvar|D<sup>j</sup>}} there is an equivalent one, {{math|''D''<sup>β''j''β1</sup>}}. All infinite-dimensional irreducible representations must be non-unitary, since the group is compact. In [[quantum mechanics]], the Casimir invariant is the "angular-momentum-squared" operator; integer values of spin {{mvar|j}} characterize [[boson|bosonic representation]]s, while half-integer values [[fermion|fermionic representation]]s. The [[Skew-Hermitian matrix|antihermitian]] matrices used above are utilized as [[spin operator]]s, after they are multiplied by {{mvar|i}}, so they are now [[Hermitian matrix|hermitian]] (like the Pauli matrices). Thus, in this language, :<math> [\boldsymbol{J}_x, \boldsymbol{J}_y] = i\boldsymbol{J}_z, \quad [\boldsymbol{J}_z, \boldsymbol{J}_x] = i\boldsymbol{J}_y, \quad [\boldsymbol{J}_y, \boldsymbol{J}_z] = i\boldsymbol{J}_x. </math> and hence :<math>\boldsymbol{J}^2= j(j+1) \boldsymbol{I}_{2j+1}.</math> Explicit expressions for these {{mvar|D<sup>j</sup>}} are, :<math>\begin{align} \left (\boldsymbol{J}_z^{(j)}\right )_{ba} &= (j+1-a)\delta_{b,a}\\ \left (\boldsymbol{J}_x^{(j)}\right )_{ba} &=\frac{1}{2} \left (\delta_{b,a+1}+\delta_{b+1,a} \right ) \sqrt{(j+1)(a+b-1)-ab}\\ \left (\boldsymbol{J}_y^{(j)}\right )_{ba} &=\frac{1}{2i} \left (\delta_{b,a+1}-\delta_{b+1,a} \right ) \sqrt{(j+1)(a+b-1)-ab}\\ \end{align}</math> where {{mvar|j}} is arbitrary and <math>1 \le a, b \le 2j+1</math>. For example, the resulting spin matrices for spin 1 (<math>j = 1</math>) are :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 &1 &0\\ 1 &0 &1\\ 0 &1 &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 &-i &0\\ i &0 &-i\\ 0 &i &0 \end{pmatrix} \\ \boldsymbol{J}_z &= \begin{pmatrix} 1 &0 &0\\ 0 &0 &0\\ 0 &0 &-1 \end{pmatrix} \end{align}</math> Note, however, how these are in an equivalent, but different basis, the [[Spherical basis#Change of basis matrix|spherical basis]], than the above {{mvar|i}}'''''L''''' in the Cartesian basis.<ref group="nb">Specifically, <math>\boldsymbol{U} \boldsymbol{J}_{\alpha}\boldsymbol{U}^\dagger=i\boldsymbol{L}_\alpha</math> for : <math>\boldsymbol{U}= \left( \begin{array}{ccc} -\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & i & 0 \\ \end{array} \right).</math></ref> For higher spins, such as spin {{sfrac|3|2}} (<math>j=\tfrac{3}{2}</math>): :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{2} \begin{pmatrix} 0 &\sqrt{3} &0 &0\\ \sqrt{3} &0 &2 &0\\ 0 &2 &0 &\sqrt{3}\\ 0 &0 &\sqrt{3} &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{2} \begin{pmatrix} 0 &-i\sqrt{3} &0 &0\\ i\sqrt{3} &0 &-2i &0\\ 0 &2i &0 &-i\sqrt{3}\\ 0 &0 &i\sqrt{3} &0 \end{pmatrix} \\ \boldsymbol{J}_z &=\frac{1}{2} \begin{pmatrix} 3 &0 &0 &0\\ 0 &1 &0 &0\\ 0 &0 &-1 &0\\ 0 &0 &0 &-3 \end{pmatrix}. \end{align}</math> For spin {{sfrac|5|2}} (<math>j = \tfrac{5}{2}</math>), :<math>\begin{align} \boldsymbol{J}_x &= \frac{1}{2} \begin{pmatrix} 0 &\sqrt{5} &0 &0 &0 &0 \\ \sqrt{5} &0 &2\sqrt{2} &0 &0 &0 \\ 0 &2\sqrt{2} &0 &3 &0 &0 \\ 0 &0 &3 &0 &2\sqrt{2} &0 \\ 0 &0 &0 &2\sqrt{2} &0 &\sqrt{5} \\ 0 &0 &0 &0 &\sqrt{5} &0 \end{pmatrix} \\ \boldsymbol{J}_y &= \frac{1}{2} \begin{pmatrix} 0 &-i\sqrt{5} &0 &0 &0 &0 \\ i\sqrt{5} &0 &-2i\sqrt{2} &0 &0 &0 \\ 0 &2i\sqrt{2} &0 &-3i &0 &0 \\ 0 &0 &3i &0 &-2i\sqrt{2} &0 \\ 0 &0 &0 &2i\sqrt{2} &0 &-i\sqrt{5} \\ 0 &0 &0 &0 &i\sqrt{5} &0 \end{pmatrix} \\ \boldsymbol{J}_z &= \frac{1}{2} \begin{pmatrix} 5 &0 &0 &0 &0 &0 \\ 0 &3 &0 &0 &0 &0 \\ 0 &0 &1 &0 &0 &0 \\ 0 &0 &0 &-1 &0 &0 \\ 0 &0 &0 &0 &-3 &0 \\ 0 &0 &0 &0 &0 &-5 \end{pmatrix}. \end{align}</math> {{main|Spin (physics)#Higher spins}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)