Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
5-cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Coordinates=== The simplest set of [[Cartesian coordinates]] is: (2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (π,π,π,π), with edge length 2{{sqrt|2}}, where π is the [[golden ratio]].{{sfn|Coxeter|1991|p=30|loc=Β§4.2. The Crystallographic regular polytopes}} While these coordinates are not origin-centered, subtracting <math>(1,1,1,1)/(2-\tfrac{1}{\phi})</math> from each translates the 4-polytope's [[circumcenter]] to the origin with radius <math>2(\phi-1/(2-\tfrac{1}{\phi})) =\sqrt{\tfrac{16}{5}}\approx 1.7888</math>, with the following coordinates: :<math>\left(\tfrac{2}{\phi}-3, 1, 1, 1\right)/(\tfrac{1}{\phi}-2)</math> :<math>\left(1,\tfrac{2}{\phi}-3,1,1 \right)/(\tfrac{1}{\phi}-2)</math> :<math>\left(1,1,\tfrac{2}{\phi}-3,1 \right)/(\tfrac{1}{\phi}-2)</math> :<math>\left(1,1,1,\tfrac{2}{\phi}-3 \right)/(\tfrac{1}{\phi}-2)</math> :<math>\left(\tfrac{2}{\phi},\tfrac{2}{\phi},\tfrac{2}{\phi},\tfrac{2}{\phi} \right)/(\tfrac{1}{\phi}-2)</math> The following set of origin-centered coordinates with the same radius and edge length as above can be seen as a hyperpyramid with a [[Tetrahedron#Coordinates for a regular tetrahedron|regular tetrahedral base]] in 3-space: :<math>\left( 1, 1, 1, \frac{-1}\sqrt{5}\right)</math> :<math>\left( 1,-1,-1,\frac{-1}\sqrt{5} \right)</math> :<math>\left(-1, 1,-1,\frac{-1}\sqrt{5} \right)</math> :<math>\left(-1,-1, 1,\frac{-1}\sqrt{5} \right)</math> :<math>\left( 0, 0, 0,\frac{4}\sqrt{5} \right)</math> Scaling these or the previous set of coordinates by <math>\tfrac{\sqrt{5}}{4}</math> give '''''unit-radius''''' origin-centered regular 5-cells with edge lengths <math>\sqrt{\tfrac{5}{2}}</math>. The hyperpyramid has coordinates: :<math>\left( \sqrt{5}, \sqrt{5}, \sqrt{5}, -1 \right)/4</math> :<math>\left( \sqrt{5},-\sqrt{5},-\sqrt{5}, -1 \right)/4</math> :<math>\left(-\sqrt{5}, \sqrt{5},-\sqrt{5}, -1 \right)/4</math> :<math>\left(-\sqrt{5},-\sqrt{5}, \sqrt{5}, -1 \right)/4</math> :<math>\left( 0, 0, 0, 1 \right)</math> Coordinates for the vertices of another origin-centered regular 5-cell with edge length 2 and radius <math>\sqrt{\tfrac{8}{5}}\approx 1.265</math> are: :<math>\left( \frac{1}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left( \frac{1}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0 \right)</math> :<math>\left( \frac{1}{\sqrt{10}},\ -\sqrt{\frac{3}{2}},\ 0,\ 0 \right)</math> :<math>\left( -2\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0 \right)</math> Scaling these by <math>\sqrt{\tfrac{5}{8}}</math> to unit-radius and edge length <math>\sqrt{\tfrac{5}{2}}</math> gives: :<math>\left(\sqrt{3}, \sqrt{5}, \sqrt{10},\pm\sqrt{30} \right)/(4\sqrt{3})</math> :<math>\left(\sqrt{3}, \sqrt{5}, -\sqrt{40},0\right)/(4\sqrt{3})</math> :<math>\left(\sqrt{3},-\sqrt{45},0,0\right)/(4\sqrt{3})</math> :<math>\left(-1, 0, 0, 0 \right)</math> The vertices of a 4-simplex (with edge {{radic|2}} and radius 1) can be more simply constructed on a [[hyperplane]] in 5-space, as (distinct) permutations of (0,0,0,0,1) ''or'' (0,1,1,1,1); in these positions it is a [[facet (geometry)|facet]] of, respectively, the [[5-orthoplex]] or the [[rectified penteract]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)