Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic number theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Additive number theory === {{main|Additive number theory}} One of the most important problems in additive number theory is [[Waring's problem]], which asks whether it is possible, for any ''k'' β₯ 2, to write any positive integer as the sum of a bounded number of ''k''th powers, :<math>n=x_1^k+\cdots+x_\ell^k.</math> The case for squares, ''k'' = 2, was [[Lagrange's four-square theorem|answered]] by Lagrange in 1770, who proved that every positive integer is the sum of at most four squares. The general case was proved by [[David Hilbert|Hilbert]] in 1909, using algebraic techniques which gave no explicit bounds. An important breakthrough was the application of analytic tools to the problem by [[G. H. Hardy|Hardy]] and [[John Edensor Littlewood|Littlewood]]. These techniques are known as the circle method, and give explicit upper bounds for the function ''G''(''k''), the smallest number of ''k''th powers needed, such as [[Ivan Matveyevich Vinogradov|Vinogradov]]'s bound :<math>G(k)\leq k(3\log k+11).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)