Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Array processing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Example: spatial filtering == In radio astronomy, RF interference must be mitigated to detect and observe any meaningful objects and events in the night sky. [[File:Telescope array.png|thumb|An array of radio telescopes with an incoming radio wave and RF interference]] === Projecting out the interferer === For an array of Radio Telescopes with a spatial signature of the interfering source <math>\mathbf{a}</math> that is not a known function of the direction of interference and its time variance, the signal covariance matrix takes the form: <math>\mathbf{R} = \mathbf{R}_v + \sigma_s^2 \mathbf{a} \mathbf{a}^{\dagger} + \sigma_n^2 \mathbf{I}</math> where <math>\mathbf{R}_v</math> is the visibilities covariance matrix (sources), <math>\sigma_s^2</math> is the power of the interferer, and <math>\sigma_n^2</math> is the noise power, and <math>\dagger</math> denotes the Hermitian transpose. One can construct a projection matrix <math>\mathbf{P}_a^{\perp}</math>, which, when left and right multiplied by the signal covariance matrix, will reduce the interference term to zero. <math>\mathbf{P}_a^{\perp} = \mathbf{I} - \mathbf{a}(\mathbf{a}^{\dagger} \mathbf{a})^{-1} \mathbf{a}^{\dagger}</math> So the modified signal covariance matrix becomes: <math>\tilde{\mathbf{R}} = \mathbf{P}_a^{\perp} \mathbf{R} \mathbf{P}_a^{\perp} = \mathbf{P}_a^{\perp} \mathbf{R}_v \mathbf{P}_a^{\perp} + \sigma_n^2 \mathbf{P}_a^{\perp}</math> Since <math>\mathbf{a}</math> is generally not known, <math>\mathbf{P}_a^{\perp}</math> can be constructed using the eigen-decomposition of <math>\mathbf{R}</math>, in particular the matrix containing an orthonormal basis of the noise subspace, which is the orthogonal complement of <math>\mathbf{a}</math>. The disadvantages to this approach include altering the visibilities covariance matrix and coloring the white noise term.<ref>{{cite journal |author1=Jamil Raza |author2=Albert-Jan Boonstra |author3=Alle-Jan van der Veen | date = February 2002 | title = Spatial Filtering of RF Interference in Radio Astronomy | journal = IEEE Signal Processing Letters | volume = 9 | issue = 12 | pages = 64β67 | doi = 10.1109/97.991140|bibcode=2002ISPL....9...64R|url=http://resolver.tudelft.nl/uuid:26525a9b-0815-49e2-82c8-b3c69ed4867f }}</ref> === Spatial whitening === This scheme attempts to make the interference-plus-noise term spectrally white. To do this, left and right multiply <math>\mathbf{R}</math> with inverse square root factors of the interference-plus-noise terms. <math>\tilde{\mathbf{R}} = (\sigma_s^2 \mathbf{a} \mathbf{a}^{\dagger} + \sigma_n^2 \mathbf{I})^{-{\frac{1}{2}}} \mathbf{R}(\sigma_s^2 \mathbf{a} \mathbf{a}^{\dagger} + \sigma_n^2 \mathbf{I})^{-{\frac{1}{2}}}</math> The calculation requires rigorous matrix manipulations, but results in an expression of the form: <math>\tilde{\mathbf{R}} = (\cdot)^{-{\frac{1}{2}}} \mathbf{R}_v(\cdot)^{-{\frac{1}{2}}} + \mathbf{I}</math> This approach requires much more computationally intensive matrix manipulations, and again the visibilities covariance matrix is altered.<ref>{{cite journal |author1=Amir Leshem |author2=Alle-Jan van der Veen | date = August 16, 2000 | title = Radio astronomical imaging in the presence of strong radio interference | journal = IEEE Transactions on Information Theory | volume = 46 | issue = 5 | pages = 1730β1747 | doi = 10.1109/18.857787 |arxiv = astro-ph/0008239|s2cid=4671806 }}</ref> === Subtraction of interference estimate === Since <math>\mathbf{a}</math> is unknown, the best estimate is the dominant eigenvector <math>\mathbf{u}_1</math> of the eigen-decomposition of <math>\mathbf{R} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\dagger}</math>, and likewise the best estimate of the interference power is <math>\sigma_s^2 \approx \lambda_1 - \sigma_n^2</math>, where <math>\lambda_1</math> is the dominant eigenvalue of <math>\mathbf{R}</math>. One can subtract the interference term from the signal covariance matrix: <math>\tilde{\mathbf{R}} = \mathbf{R} - \sigma_s^2 \mathbf{a} \mathbf{a}^{\dagger}</math> By right and left multiplying <math>\mathbf{R}</math>: <math>\tilde{\mathbf{R}} \approx (\mathbf{I} - \alpha \mathbf{u}_1 \mathbf{u}_1^{\dagger})\mathbf{R}(\mathbf{I} - \alpha \mathbf{u}_1 \mathbf{u}_1^{\dagger}) = \mathbf{R} - \mathbf{u}_1 \mathbf{u}_1^{\dagger} \lambda_1(2 \alpha - \alpha^2)</math> where <math>\lambda_1(2 \alpha - \alpha^2) \approx \sigma_s^2</math> by selecting the appropriate <math>\alpha</math>. This scheme requires an accurate estimation of the interference term, but does not alter the noise or sources term.<ref>{{cite journal |author1=Amir Leshem |author2=Albert-Jan Boonstra |author3=Alle-Jan van der Veen | date = November 2000 | title = Multichannel Interference Mitigation Techniques in Radio Astronomy | journal = Astrophysical Journal Supplement Series | volume = 131 | issue = 1 | pages = 355β373 | doi = 10.1086/317360 |arxiv = astro-ph/0005359|bibcode=2000ApJS..131..355L|s2cid=50311217 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)