Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bayesian network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Factorization definition=== ''X'' is a Bayesian network with respect to ''G'' if its joint [[probability density function]] (with respect to a [[product measure]]) can be written as a product of the individual density functions, conditional on their parent variables:{{sfn|Russell|Norvig|2003|p=496}} : <math> p (x) = \prod_{v \in V} p \left(x_v \,\big|\, x_{\operatorname{pa}(v)} \right) </math> where pa(''v'') is the set of parents of ''v'' (i.e. those vertices pointing directly to ''v'' via a single edge). For any set of random variables, the probability of any member of a [[joint distribution]] can be calculated from conditional probabilities using the [[chain rule (probability)|chain rule]] (given a [[topological ordering]] of ''X'') as follows:{{sfn|Russell|Norvig|2003|p=496}} : <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P \left(X_v=x_v \mid X_{v+1}=x_{v+1}, \ldots, X_n=x_n \right)</math> Using the definition above, this can be written as: : <math>\operatorname P(X_1=x_1, \ldots, X_n=x_n) = \prod_{v=1}^n \operatorname P (X_v=x_v \mid X_j=x_j \text{ for each } X_j\, \text{ that is a parent of } X_v\, )</math> The difference between the two expressions is the [[conditional independence]] of the variables from any of their non-descendants, given the values of their parent variables.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)