Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bell polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Stirling numbers and Bell numbers=== The value of the Bell polynomial ''B''<sub>''n'',''k''</sub>(''x''<sub>1</sub>,''x''<sub>2</sub>,...) on the sequence of [[factorial]]s equals an unsigned [[Stirling number of the first kind]]: :<math>B_{n,k}(0!,1!,\dots,(n-k)!)=c(n,k)=|s(n,k)| = \left[{n\atop k}\right].</math> The sum of these values gives the value of the complete Bell polynomial on the sequence of factorials: :<math>B_n(0!,1!,\dots,(n-1)!)=\sum_{k=1}^n B_{n,k}(0!,1!,\dots,(n-k)!) = \sum_{k=1}^n \left[{n\atop k}\right] = n!.</math> The value of the Bell polynomial ''B''<sub>''n'',''k''</sub>(''x''<sub>1</sub>,''x''<sub>2</sub>,...) on the sequence of ones equals a [[Stirling number of the second kind]]: :<math>B_{n,k}(1,1,\dots,1)=S(n,k)=\left\{{n\atop k}\right\}.</math> The sum of these values gives the value of the complete Bell polynomial on the sequence of ones: :<math>B_n(1,1,\dots,1)=\sum_{k=1}^n B_{n,k}(1,1,\dots,1) = \sum_{k=1}^n \left\{{n\atop k}\right\},</math> which is the ''n''th [[Bell number]]. :<math>B_{n,k}(1!,2!,\ldots,(n-k+1)!) = \binom{n-1}{k-1} \frac{n!}{k!} = L(n,k)</math> which gives the [[Lah number]]. ===Touchard polynomials=== {{main|Touchard polynomials}} Touchard polynomial <math>T_n(x) = \sum_{k=0}^n \left\{{n\atop k}\right\}\cdot x^k</math> can be expressed as the value of the complete Bell polynomial on all arguments being ''x'': : <math>T_n(x) = B_n(x,x,\dots,x).</math> ===Inverse relations=== If we define :<math>y_n = \sum_{k=1}^n B_{n,k}(x_1,\ldots,x_{n-k+1}),</math> then we have the inverse relationship :<math>x_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(y_1,\ldots,y_{n-k+1}).</math> More generally,<ref>{{Cite journal |last1=Chou |first1=W.-S. |last2=Hsu |first2=Leetsch C. |last3=Shiue |first3=Peter J.-S. |date=2006-06-01 |title=Application of FaΓ di Bruno's formula in characterization of inverse relations |journal=Journal of Computational and Applied Mathematics |language=en |volume=190 |issue=1β2 |pages=151β169 |doi=10.1016/j.cam.2004.12.041|doi-access=free }}</ref><ref>{{Cite journal |last=Chu |first=Wenchang |date=2021-11-19 |title=Bell Polynomials and Nonlinear Inverse Relations |url=https://www.combinatorics.org/ojs/index.php/eljc/article/view/v28i4p24 |journal=The Electronic Journal of Combinatorics |volume=28 |issue=4 |doi=10.37236/10390 |issn=1077-8926|doi-access=free }}</ref> given some function <math>f</math> admitting an inverse <math>g = f^{-1}</math>,<blockquote><math>y_n = \sum_{k=0}^n f^{(k)}(a) \, B_{n,k}(x_1, \ldots, x_{n-k+1}) \quad \Leftrightarrow \quad x_n = \sum_{k=0}^n g^{(k)}\big(f(a)\big) \, B_{n,k}(y_1, \ldots, y_{n-k+1}). </math></blockquote> ===Determinant forms=== The complete Bell polynomial can be expressed as [[determinant]]s: :<math>B_n(x_1,\dots,x_n) = \det\begin{bmatrix} x_1 & {n-1 \choose 1} x_2 & {n-1 \choose 2}x_3 & {n-1 \choose 3} x_4 & \cdots & \cdots & x_n \\ \\ -1 & x_1 & {n-2 \choose 1} x_2 & {n-2 \choose 2} x_3 & \cdots & \cdots & x_{n-1} \\ \\ 0 & -1 & x_1 & {n-3 \choose 1} x_2 & \cdots & \cdots & x_{n-2} \\ \\ 0 & 0 & -1 & x_1 & \cdots & \cdots & x_{n-3} \\ \\ 0 & 0 & 0 & -1 & \cdots & \cdots & x_{n-4} \\ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \\ 0 & 0 & 0 & 0 & \cdots & -1 & x_1 \end{bmatrix}</math> and :<math>B_n(x_1,\dots,x_n) = \det\begin{bmatrix} \frac{x_1}{0!} & \frac{x_2}{1!} & \frac{x_3}{2!} & \frac{x_4}{3!} & \cdots & \cdots & \frac{x_n}{(n-1)!} \\ \\ -1 & \frac{x_1}{0!} & \frac{x_2}{1!} & \frac{x_3}{2!} & \cdots & \cdots & \frac{x_{n-1}}{(n-2)!} \\ \\ 0 & -2 & \frac{x_1}{0!} & \frac{x_2}{1!} & \cdots & \cdots & \frac{x_{n-2}}{(n-3)!} \\ \\ 0 & 0 & -3 & \frac{x_1}{0!} & \cdots & \cdots & \frac{x_{n-3}}{(n-4)!} \\ \\ 0 & 0 & 0 & -4 & \cdots & \cdots & \frac{x_{n-4}}{(n-5)!} \\ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \\ 0 & 0 & 0 & 0 & \cdots & -(n-1) & \frac{x_1}{0!} \end{bmatrix}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)