Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Differences and derivatives== The Bernoulli and Euler polynomials obey many relations from [[umbral calculus]]: <math display="block">\begin{align} \Delta B_n(x) &= B_n(x+1)-B_n(x)=nx^{n-1}, \\[3mu] \Delta E_n(x) &= E_n(x+1)-E_n(x)=2(x^n-E_n(x)). \end{align}</math> ({{math|Ξ}} is the [[forward difference operator]]). Also, <math display="block"> E_n(x+1) + E_n(x) = 2x^n.</math> These [[polynomial sequence]]s are [[Appell sequence]]s: <math display="block">\begin{align} B_n'(x) &= n B_{n-1}(x), \\[3mu] E_n'(x) &= n E_{n-1}(x). \end{align}</math> ===Translations=== <math display="block">\begin{align} B_n(x+y) &= \sum_{k=0}^n {n \choose k} B_k(x) y^{n-k} \\[3mu] E_n(x+y) &= \sum_{k=0}^n {n \choose k} E_k(x) y^{n-k} \end{align}</math> These identities are also equivalent to saying that these polynomial sequences are [[Appell sequence]]s. ([[Hermite polynomials]] are another example.) ===Symmetries=== <math display="block">\begin{align} B_n(1-x) &= \left(-1\right)^n B_n(x), && n \ge 0, \text{ and in particular for } n \ne 1,~B_n(0) = B_n(1)\\[3mu] E_n(1-x) &= \left(-1\right)^n E_n(x) \\[1ex] \left(-1\right)^n B_n(-x) &= B_n(x) + nx^{n-1} \\[3mu] \left(-1\right)^n E_n(-x) &= -E_n(x) + 2x^n \\[1ex] B_n\bigl(\tfrac12\bigr) &= \left(\frac{1}{2^{n-1}}-1\right) B_n, && n \geq 0\text{ from the multiplication theorems below.} \end{align} </math> [[Zhi-Wei Sun]] and Hao Pan <ref>{{cite journal |author1=Zhi-Wei Sun |author2=Hao Pan |journal=Acta Arithmetica |volume=125 |year=2006 |pages=21β39 |title=Identities concerning Bernoulli and Euler polynomials |issue=1 |arxiv=math/0409035 |doi=10.4064/aa125-1-3|bibcode=2006AcAri.125...21S |s2cid=10841415 }}</ref> established the following surprising symmetry relation: If {{math|1= ''r'' + ''s'' + ''t'' = ''n''}} and {{math|1= ''x'' + ''y'' + ''z'' = 1}}, then <math display="block">r[s,t;x,y]_n+s[t,r;y,z]_n+t[r,s;z,x]_n=0,</math> where <math display="block">[s,t;x,y]_n=\sum_{k=0}^n(-1)^k{s \choose k}{t\choose {n-k}} B_{n-k}(x)B_k(y).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)