Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernstein polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations to higher dimension == Bernstein polynomials can be generalized to {{math|''k''}} dimensions β the resulting polynomials have the form {{math| ''B''<sub>''i''<sub>1</sub></sub>(''x''<sub>1</sub>) ''B''<sub>''i''<sub>2</sub></sub>(''x''<sub>2</sub>) ... ''B''<sub>''i''<sub>''k''</sub></sub>(''x''<sub>''k''</sub>)}}.<ref name="Lorentz"/> In the simplest case only products of the unit interval {{math|[0,1]}} are considered; but, using [[affine transformation]]s of the line, Bernstein polynomials can also be defined for products {{math|[''a''<sub>1</sub>, ''b''<sub>1</sub>] Γ [''a''<sub>2</sub>, ''b''<sub>2</sub>] Γ ... Γ [''a''<sub>''k''</sub>, ''b''<sub>''k''</sub>]}}. For a continuous function {{math|''f''}} on the {{math|''k''}}-fold product of the unit interval, the proof that {{math|''f''(''x''<sub>1</sub>, ''x''<sub>2</sub>, ... , ''x''<sub>''k''</sub>)}} can be uniformly approximated by :<math>\sum_{i_1} \sum_{i_2} \cdots \sum_{i_k} {n_1\choose i_1} {n_2\choose i_2} \cdots {n_k\choose i_k} f\left({i_1\over n_1}, {i_2\over n_2}, \dots, {i_k\over n_k}\right) x_1^{i_1} (1-x_1)^{n_1-i_1} x_2^{i_2} (1-x_2)^{n_2-i_2} \cdots x_k^{i_k} (1-x_k)^{n_k - i_k} </math> is a straightforward extension of Bernstein's proof in one dimension. <ref>{{citation|last1=Hildebrandt|first1= T. H.|authorlink=Theophil Henry Hildebrandt|last2=Schoenberg|first2= I. J.|authorlink2= I. J. Schoenberg|title= On linear functional operations and the moment problem for a finite interval in one or several dimensions|journal=[[Annals of Mathematics]]|volume= 34|year=1933|issue= 2|page=327|doi= 10.2307/1968205|jstor= 1968205|url=https://www.jstor.org/stable/1968205}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)