Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brouwer fixed-point theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===One-dimensional case=== [[File:Théorème-de-Brouwer-dim-1.svg|200px|right]] In one dimension, the result is intuitive and easy to prove. The continuous function ''f'' is defined on a closed interval [''a'', ''b''] and takes values in the same interval. Saying that this function has a fixed point amounts to saying that its graph (dark green in the figure on the right) intersects that of the function defined on the same interval [''a'', ''b''] which maps ''x'' to ''x'' (light green). Intuitively, any continuous line from the left edge of the square to the right edge must necessarily intersect the green diagonal. To prove this, consider the function ''g'' which maps ''x'' to ''f''(''x'') − ''x''. It is ≥ 0 on ''a'' and ≤ 0 on ''b''. By the [[intermediate value theorem]], ''g'' has a [[Root of a function|zero]] in [''a'', ''b'']; this zero is a fixed point. Brouwer is said to have expressed this as follows: "Instead of examining a surface, we will prove the theorem about a piece of string. Let us begin with the string in an unfolded state, then refold it. Let us flatten the refolded string. Again a point of the string has not changed its position with respect to its original position on the unfolded string."<ref name=Arte />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)