Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Calculus of variations
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalization to other boundary value problems === A more general expression for the potential energy of a membrane is <math display="block">V[\varphi] = \iint_D \left[ \frac{1}{2} \nabla \varphi \cdot \nabla \varphi + f(x,y) \varphi \right] \, dx\,dy \, + \int_C \left[ \frac{1}{2} \sigma(s) \varphi^2 + g(s) \varphi \right] \, ds.</math> This corresponds to an external force density <math>f(x,y)</math> in <math>D,</math> an external force <math>g(s)</math> on the boundary <math>C,</math> and elastic forces with modulus <math>\sigma(s)</math>acting on <math>C.</math> The function that minimizes the potential energy '''with no restriction on its boundary values''' will be denoted by <math>u.</math> Provided that <math>f</math> and <math>g</math> are continuous, regularity theory implies that the minimizing function <math>u</math> will have two derivatives. In taking the first variation, no boundary condition need be imposed on the increment <math>v.</math> The first variation of <math>V[u + \varepsilon v]</math> is given by <math display="block">\iint_D \left[ \nabla u \cdot \nabla v + f v \right] \, dx\, dy + \int_C \left[ \sigma u v + g v \right] \, ds = 0. </math> If we apply the divergence theorem, the result is <math display="block">\iint_D \left[ -v \nabla \cdot \nabla u + v f \right] \, dx \, dy + \int_C v \left[ \frac{\partial u}{\partial n} + \sigma u + g \right] \, ds =0. </math> If we first set <math>v = 0</math> on <math>C,</math> the boundary integral vanishes, and we conclude as before that <math display="block">- \nabla \cdot \nabla u + f =0 </math> in <math>D.</math> Then if we allow <math>v</math> to assume arbitrary boundary values, this implies that <math>u</math> must satisfy the boundary condition <math display="block">\frac{\partial u}{\partial n} + \sigma u + g =0, </math> on <math>C.</math> This boundary condition is a consequence of the minimizing property of <math>u</math>: it is not imposed beforehand. Such conditions are called '''natural boundary conditions'''. The preceding reasoning is not valid if <math>\sigma</math> vanishes identically on <math>C.</math> In such a case, we could allow a trial function <math>\varphi \equiv c,</math> where <math>c</math> is a constant. For such a trial function, <math display="block">V[c] = c\left[ \iint_D f \, dx\,dy + \int_C g \, ds \right].</math> By appropriate choice of <math>c,</math> <math>V</math> can assume any value unless the quantity inside the brackets vanishes. Therefore, the variational problem is meaningless unless <math display="block">\iint_D f \, dx\,dy + \int_C g \, ds =0.</math> This condition implies that net external forces on the system are in equilibrium. If these forces are in equilibrium, then the variational problem has a solution, but it is not unique, since an arbitrary constant may be added. Further details and examples are in Courant and Hilbert (1953).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)