Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Roots and extrema=== A Chebyshev polynomial of either kind with degree {{mvar|n}} has {{mvar|n}} different [[simple root]]s, called '''Chebyshev roots''', in the interval {{closed-closed|β1, 1}}. The roots of the Chebyshev polynomial of the first kind are sometimes called [[Chebyshev nodes]] because they are used as ''nodes'' in polynomial interpolation. Using the trigonometric definition and the fact that: <math display="block">\cos\left((2k+1)\frac{\pi}{2}\right)=0</math> one can show that the roots of {{mvar|T<sub>n</sub>}} are: <math display="block"> x_k = \cos\left(\frac{\pi(k+1/2)}{n}\right),\quad k=0,\ldots,n-1.</math> Similarly, the roots of {{mvar|U<sub>n</sub>}} are: <math display="block"> x_k = \cos\left(\frac{k}{n+1}\pi\right),\quad k=1,\ldots,n.</math> The [[Maxima and minima|extrema]] of {{mvar|T<sub>n</sub>}} on the interval {{math|β1 β€ ''x'' β€ 1}} are located at: <math display="block"> x_k = \cos\left(\frac{k}{n}\pi\right),\quad k=0,\ldots,n.</math> One unique property of the Chebyshev polynomials of the first kind is that on the interval {{math|β1 β€ ''x'' β€ 1}} all of the [[Maxima and minima|extrema]] have values that are either β1 or 1. Thus these polynomials have only two finite [[Critical value (critical point)|critical value]]s, the defining property of [[Shabat polynomial]]s. Both the first and second kinds of Chebyshev polynomial have extrema at the endpoints, given by: <math display="block">\begin{align} T_n(1) &= 1 \\ T_n(-1) &= (-1)^n \\ U_n(1) &= n+1 \\ U_n(-1) &= (-1)^n (n+1). \end{align}</math> The [[Maxima and minima|extrema]] of <math>T_n(x)</math> on the interval <math>-1 \leq x \leq 1</math> where <math>n>0</math> are located at <math>n+1</math> values of <math>x</math>. They are <math> \pm 1</math>, or <math> \cos\left(\frac{2\pi k}{d}\right)</math> where <math>d > 2</math>, <math>d \;|\; 2n</math>, <math>0 < k < d/2</math> and <math>(k, d) = 1</math>, i.e., <math>k</math> and <math>d</math> are relatively prime numbers. Specifically ([[Minimal polynomial of 2cos(2pi/n)]]<ref name=Gurtas>{{cite journal |first1=Y. Z. |last1=GΓΌrtaΕ |title=Chebyshev Polynomials and the minimal polynomial of <math>\cos (2 \pi/n)</math> |year=2017 |journal=American Mathematical Monthly |volume=124 |number=1 |pages=74β78 |doi=10.4169/amer.math.monthly.124.1.74|s2cid=125797961 }}</ref><ref name=Wolfram0>{{cite journal |first1=D. A. |last1=Wolfram |title=Factoring Chebyshev polynomials of the first and second kinds with minimal polynomials of <math>\cos (2 \pi /d )</math> |year=2022 |journal=American Mathematical Monthly |volume=129 |number=2 |pages=172β176 |doi=10.1080/00029890.2022.2005391|s2cid=245808448 }}</ref>) when <math>n</math> is even: * <math>T_n(x) = 1</math> if <math>x = \pm 1</math>, or <math>d > 2</math> and <math>2n/d</math> is even. There are <math>n/2 + 1</math> such values of <math>x</math>. * <math>T_n(x) = -1</math> if <math>d > 2</math> and <math>2n/d</math> is odd. There are <math>n/2</math> such values of <math>x</math>. When <math>n</math> is odd: * <math>T_n(x) = 1</math> if <math>x = 1</math>, or <math>d > 2</math> and <math>2n/d</math> is even. There are <math>(n+1)/2</math> such values of <math>x</math>. * <math>T_n(x) = -1</math> if <math>x = -1</math>, or <math>d > 2</math> and <math>2n/d</math> is odd. There are <math>(n+1)/2</math> such values of <math>x</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)