Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Coding region
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Coding sequence detection == [[File:Human karyotype with bands and sub-bands.png|thumb|Schematic [[karyotype|karyogram]] of a human, showing an overview of the [[human genome]] on [[G banding]] (which includes [[Giemsa-stain]]ing), wherein coding DNA regions occur to a greater extent in lighter ([[GC-content|GC rich]]) regions.<ref name=Romiguier2017>{{cite journal| author=Romiguier J, Roux C| title=Analytical Biases Associated with GC-Content in Molecular Evolution. | journal=Front Genet | year= 2017 | volume= 8 | issue= | pages= 16 | pmid=28261263 | doi=10.3389/fgene.2017.00016 | pmc=5309256 | doi-access=free }} </ref><br>{{further|Karyotype}}]] While identification of [[open reading frames]] within a DNA sequence is straightforward, identifying coding sequences is not, because the cell translates only a subset of all open reading frames to proteins.<ref>{{cite journal | vauthors = Furuno M, Kasukawa T, Saito R, Adachi J, Suzuki H, Baldarelli R, Hayashizaki Y, Okazaki Y | display-authors = 6 | title = CDS annotation in full-length cDNA sequence | journal = Genome Research | volume = 13 | issue = 6B | pages = 1478β87 | date = June 2003 | pmid = 12819146 | pmc = 403693 | doi = 10.1101/gr.1060303 | publisher = Cold Spring Harbor Laboratory Press }}</ref> Currently CDS prediction uses sampling and sequencing of mRNA from cells, although there is still the problem of determining which parts of a given mRNA are actually translated to protein. CDS prediction is a subset of [[gene prediction]], the latter also including prediction of DNA sequences that code not only for protein but also for other functional elements such as RNA genes and regulatory sequences. In both [[prokaryote]]s and [[eukaryote]]s, [[Overlapping gene|gene overlapping]] occurs relatively often in both DNA and RNA viruses as an evolutionary advantage to reduce genome size while retaining the ability to produce various proteins from the available coding regions.<ref>{{cite journal | vauthors = Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan IK, Tatusov RL, Koonin EV | title = Purifying and directional selection in overlapping prokaryotic genes | language = en | journal = Trends in Genetics | volume = 18 | issue = 5 | pages = 228β32 | date = May 2002 | pmid = 12047938 | doi = 10.1016/S0168-9525(02)02649-5 | url = https://www.cell.com/trends/genetics/abstract/S0168-9525(02)02649-5 | url-access = subscription }}</ref><ref>{{cite journal | vauthors = Chirico N, Vianelli A, Belshaw R | title = Why genes overlap in viruses | journal = Proceedings. Biological Sciences | volume = 277 | issue = 1701 | pages = 3809β17 | date = December 2010 | pmid = 20610432 | pmc = 2992710 | doi = 10.1098/rspb.2010.1052 }}</ref> For both DNA and RNA, [[Sequence alignment#Pairwise alignment|pairwise alignments]] can detect overlapping coding regions, including short [[open reading frame]]s in viruses, but would require a known coding strand to compare the potential overlapping coding strand with.<ref>{{cite journal | vauthors = Firth AE, Brown CM | title = Detecting overlapping coding sequences with pairwise alignments | journal = Bioinformatics | volume = 21 | issue = 3 | pages = 282β92 | date = February 2005 | pmid = 15347574 | doi = 10.1093/bioinformatics/bti007 | url = https://academic.oup.com/bioinformatics/article/21/3/282/237775 | doi-access = free }}</ref> An alternative method using single genome sequences would not require multiple genome sequences to execute comparisons but would require at least 50 nucleotides overlapping in order to be sensitive.<ref>{{cite journal | vauthors = Schlub TE, Buchmann JP, Holmes EC | title = A Simple Method to Detect Candidate Overlapping Genes in Viruses Using Single Genome Sequences | journal = Molecular Biology and Evolution | volume = 35 | issue = 10 | pages = 2572β2581 | date = October 2018 | pmid = 30099499 | pmc = 6188560 | doi = 10.1093/molbev/msy155 | editor-first = Harmit | editor-last = Malik }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)