Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conformal geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Ambient metric model==== {{see also|Ambient construction}} Another way to realize the representative metrics is through a special [[coordinate system]] on {{nowrap|'''R'''<sup>''n''+1, 1</sup>}}. Suppose that the Euclidean ''n''-sphere ''S'' carries a [[stereographic projection|stereographic coordinate system]]. This consists of the following map of {{nowrap|'''R'''<sup>''n''</sup> β ''S'' β '''R'''<sup>''n''+1</sup>}}: :<math> \mathbf{y} \in \mathbf{R} ^n \mapsto \left( \frac{ 2 \mathbf{y} }{ \left| \mathbf{y} \right| ^2 + 1 }, \frac{ \left| \mathbf{y} \right| ^2 - 1 }{ \left| \mathbf{y} \right| ^2 + 1 } \right) \in S \sub \mathbf{R} ^{n+1} .</math> In terms of these stereographic coordinates, it is possible to give a coordinate system on the null cone ''N''<sup>+</sup> in Minkowski space. Using the embedding given above, the representative metric section of the null cone is :<math> x_0 = \sqrt{2} \frac{ \left| \mathbf{y} \right| ^2 }{ 1 + \left| \mathbf{y} \right| ^2 } , x_i = \frac{ y_i }{ \left| \mathbf{y} \right| ^2 + 1 } , x _{n+1} = \sqrt{2} \frac{1}{ \left| \mathbf{y} \right| ^2 + 1 } .</math> Introduce a new variable ''t'' corresponding to dilations up ''N''<sup>+</sup>, so that the null cone is coordinatized by :<math>x_0 = t \sqrt{2} \frac{ \left| \mathbf{y} \right| ^2}{ 1 + \left| \mathbf{y} \right| ^2 }, x_i = t \frac{y_i}{ \left| \mathbf{y} \right| ^2 + 1}, x_{n+1} = t \sqrt{2} \frac{1}{ \left| \mathbf{y} \right| ^2 + 1 } .</math> Finally, let ''Ο'' be the following defining function of ''N''<sup>+</sup>: :<math> \rho = \frac{ - 2 x _0 x _{n+1} + x _1^2 + x _2^2 + \cdots + x _n^2 }{ t ^2 } .</math> In the ''t'', ''Ο'', ''y'' coordinates on {{nowrap|'''R'''<sup>''n''+1,1</sup>}}, the Minkowski metric takes the form: :<math> t ^2 g _{ij} ( y ) \, dy ^i \, dy ^j + 2 \rho \, dt ^2 + 2 t \, dt \, d \rho , </math> where ''g''<sub>''ij''</sub> is the metric on the sphere. In these terms, a section of the bundle ''N''<sup>+</sup> consists of a specification of the value of the variable {{nowrap|1=''t'' = ''t''(''y''<sup>''i''</sup>)}} as a function of the ''y''<sup>''i''</sup> along the null cone {{nowrap|1=''Ο'' = 0}}. This yields the following representative of the conformal metric on ''S'': :<math> t ( y ) ^2 g _{ij} \, d y ^i \, d y ^j .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)