Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Connection form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Curvature==== The curvature 2-form of the Levi-Civita connection is the matrix (Ω<sub>''i''</sub><sup>''j''</sup>) given by :<math> \Omega_i{}^j(\mathbf e) = d\omega_i{}^j(\mathbf e)+\sum_k\omega_k{}^j(\mathbf e)\wedge\omega_i{}^k(\mathbf e). </math> For simplicity, suppose that the frame '''e''' is [[Holonomic basis|holonomic]], so that {{nowrap|1=''dθ''<sup>''i''</sup> = 0}}.<ref>In a non-holonomic frame, the expression of curvature is further complicated by the fact that the derivatives dθ<sup>i</sup> must be taken into account.</ref> Then, employing now the [[summation convention]] on repeated indices, :<math>\begin{array}{ll} \Omega_i{}^j &= d(\Gamma^j{}_{qi}\theta^q) + (\Gamma^j{}_{pk}\theta^p)\wedge(\Gamma^k{}_{qi}\theta^q)\\ &\\ &=\theta^p\wedge\theta^q\left(\partial_p\Gamma^j{}_{qi}+\Gamma^j{}_{pk}\Gamma^k{}_{qi})\right)\\ &\\ &=\tfrac12\theta^p\wedge\theta^q R_{pqi}{}^j \end{array} </math> where ''R'' is the [[Riemann curvature tensor]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)