Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diagonalizable matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Quantum mechanical application == In [[quantum mechanics|quantum mechanical]] and [[quantum chemistry|quantum chemical]] computations matrix diagonalization is one of the most frequently applied numerical processes. The basic reason is that the time-independent [[Schrödinger equation]] is an eigenvalue equation, albeit in most of the physical situations on an infinite dimensional [[Hilbert space]]. A very common approximation is to truncate (or project) the Hilbert space to finite dimension, after which the Schrödinger equation can be formulated as an eigenvalue problem of a real symmetric, or complex Hermitian matrix. Formally this approximation is founded on the [[variational principle]], valid for Hamiltonians that are bounded from below. [[Perturbation theory (quantum mechanics)#First order corrections|First-order perturbation theory]] also leads to matrix eigenvalue problem for degenerate states.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)