Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Directional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Rotations=== The [[rotation operator (quantum mechanics)|rotation operator]] also contains a directional derivative. The rotation operator for an angle '''''θ''''', i.e. by an amount ''θ'' = |'''''θ'''''| about an axis parallel to <math> \hat{\theta} = \boldsymbol{\theta}/\theta</math> is <math display="block">U(R(\mathbf{\theta}))=\exp(-i\mathbf{\theta}\cdot\mathbf{L}).</math> Here '''L''' is the vector operator that generates [[SO(3)]]: <math display="block">\mathbf{L}=\begin{pmatrix} 0& 0 & 0\\ 0& 0 & 1\\ 0& -1 & 0 \end{pmatrix}\mathbf{i}+\begin{pmatrix} 0 &0 & -1\\ 0& 0 &0 \\ 1 & 0 & 0 \end{pmatrix}\mathbf{j}+\begin{pmatrix} 0&1 &0 \\ -1&0 &0 \\ 0 & 0 & 0 \end{pmatrix}\mathbf{k}.</math> It may be shown geometrically that an infinitesimal right-handed rotation changes the position vector '''x''' by <math display="block">\mathbf{x}\rightarrow \mathbf{x}-\delta\boldsymbol{\theta}\times\mathbf{x}.</math> So we would expect under infinitesimal rotation: <math display="block">U(R(\delta\boldsymbol{\theta})) f(\mathbf{x}) = f(\mathbf{x}-\delta\boldsymbol{\theta}\times\mathbf{x})=f(\mathbf{x})-(\delta\boldsymbol{\theta}\times\mathbf{x})\cdot\nabla f.</math> It follows that <math display="block">U(R(\delta\mathbf{\theta}))=1-(\delta\mathbf{\theta}\times\mathbf{x})\cdot\nabla.</math> Following the same exponentiation procedure as above, we arrive at the rotation operator in the position basis, which is an exponentiated directional derivative:<ref>{{cite book|last1=Shankar|first1=R. | title=Principles of quantum mechanics | date=1994|publisher=Kluwer Academic / Plenum|location=New York|isbn=9780306447907|page=318|edition=2nd}}</ref> <math display="block">U(R(\mathbf{\theta}))=\exp(-(\mathbf{\theta}\times\mathbf{x})\cdot\nabla).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)