Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Entropy=== If {{mvar|X}} is a <math>\operatorname{Dir}(\boldsymbol\alpha)</math> random variable, the [[differential entropy]] of {{mvar|X}} (in [[nat (unit)|nat units]]) is<ref>{{cite book |last1=Lin |first1=Jiayu |title=On The Dirichlet Distribution |date=2016 |publisher=Queen's University |location=Kingston, Canada |pages=§ 2.4.9 |url=https://mast.queensu.ca/~communications/Papers/msc-jiayu-lin.pdf}}</ref> <math display=block>h(\boldsymbol X) = \operatorname{E}[- \ln f(\boldsymbol X)] = \ln \operatorname{B}(\boldsymbol\alpha) + (\alpha_0-K)\psi(\alpha_0) - \sum_{j=1}^K (\alpha_j-1)\psi(\alpha_j) </math> where <math>\psi</math> is the [[digamma function]]. The following formula for <math> \operatorname{E}[\ln(X_i)]</math> can be used to derive the differential [[information entropy|entropy]] above. Since the functions <math>\ln(X_i)</math> are the sufficient statistics of the Dirichlet distribution, the [[Exponential family#Moments and cumulants of the sufficient statistic|exponential family differential identities]] can be used to get an analytic expression for the expectation of <math>\ln(X_i)</math> (see equation (2.62) in <ref>{{cite web|last=Nguyen|first=Duy|title=AN IN DEPTH INTRODUCTION TO VARIATIONAL BAYES NOTE|date=15 August 2023 |ssrn=4541076 |url=https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4541076|access-date=15 August 2023}}</ref>) and its associated covariance matrix: <math display=block>\operatorname{E}[\ln(X_i)] = \psi(\alpha_i)-\psi(\alpha_0)</math> and <math display=block>\operatorname{Cov}[\ln(X_i),\ln(X_j)] = \psi'(\alpha_i) \delta_{ij} - \psi'(\alpha_0)</math> where <math>\psi</math> is the [[digamma function]], <math>\psi'</math> is the [[trigamma function]], and <math>\delta_{ij}</math> is the [[Kronecker delta]]. The spectrum of [[Rényi entropy|Rényi information]] for values other than <math> \lambda = 1</math> is given by<ref>{{cite journal | journal=Journal of Statistical Planning and Inference | volume=93 | issue=325 | pages=51–69 | year=2001 | author=Song, Kai-Sheng | title=Rényi information, loglikelihood, and an intrinsic distribution measure| doi = 10.1016/S0378-3758(00)00169-5 | publisher=Elsevier}}</ref> <math display=block>F_R(\lambda) = (1-\lambda)^{-1} \left( - \lambda \log \mathrm{B}(\boldsymbol\alpha) + \sum_{i=1}^K \log \Gamma(\lambda(\alpha_i - 1) + 1) - \log \Gamma(\lambda (\alpha_0 - K) + K ) \right) </math> and the information entropy is the limit as <math>\lambda</math> goes to 1. Another related interesting measure is the entropy of a discrete categorical (one-of-K binary) vector {{math|'''Z'''}} with probability-mass distribution {{math|'''X'''}}, i.e., <math> P(Z_i=1, Z_{j\ne i} = 0 | \boldsymbol X) = X_i </math>. The conditional [[information entropy]] of {{math|'''Z'''}}, given {{math|'''X'''}} is <math display=block>S(\boldsymbol X) = H(\boldsymbol Z | \boldsymbol X) = \operatorname{E}_{\boldsymbol Z}[- \log P(\boldsymbol Z | \boldsymbol X ) ] = \sum_{i=1}^K - X_i \log X_i </math> This function of {{math|'''X'''}} is a scalar random variable. If {{math|'''X'''}} has a symmetric Dirichlet distribution with all <math>\alpha_i = \alpha</math>, the expected value of the entropy (in [[nat (unit)|nat units]]) is<ref>{{cite conference |last1=Nemenman |first1=Ilya |last2=Shafee |first2=Fariel |last3=Bialek |first3=William |title= Entropy and Inference, revisited |date=2002 |conference=NIPS 14 |url=http://papers.nips.cc/paper/1965-entropy-and-inference-revisited.pdf}}, eq. 8</ref> <math display=block>\operatorname{E}[S(\boldsymbol X)] = \sum_{i=1}^K \operatorname{E}[- X_i \ln X_i] = \psi(K\alpha + 1) - \psi(\alpha + 1) </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)