Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distance geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characterization via Cayley–Menger determinants == The following results are proved in Blumethal's book.<ref name="blumenthal" /> === Embedding ''n'' + 1 points in the real numbers === Given a semimetric space <math> (S,d)</math> , with <math>S = \{P_0, \ldots, P_n\}</math>, and <math>d(P_i, P_j) = d_{ij}\ge 0</math>, <math>0 \le i < j \le n</math>, an isometric embedding of <math>(S, d)</math> into <math>\mathbb{R}^n</math> is defined by <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^n</math>, such that <math>d(A_i, A_j) = d_{ij}</math> for all <math>0 \le i < j \le n</math>. Again, one asks whether such an isometric embedding exists for <math>(S,d)</math>. A necessary condition is easy to see: for all <math>k = 1, \ldots, n</math>, let <math>v_k</math> be the ''k''-simplex formed by <math display="inline">A_0, A_1,\ldots, A_k</math>, then :<math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) = (-1)^{k+1} \operatorname{CM}(A_0, \ldots, A_k) = 2^k (k!)^k \operatorname{Vol}_k(v_k)^2 \ge 0</math> The converse also holds. That is, if for all <math>k = 1, \ldots, n</math>, :<math>(-1)^{k+1}\operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> then such an embedding exists. Further, such embedding is unique up to isometry in <math>\mathbb{R}^n</math>. That is, given any two isometric embeddings defined by <math>A_0, A_1,\ldots, A_n</math>, and <math>A'_0, A'_1,\ldots, A'_n</math>, there exists a (not necessarily unique) isometry <math>T : \mathbb R^n \to \mathbb R^n</math>, such that <math>T(A_k) = A'_k</math> for all <math>k = 0, \ldots, n</math>. Such <math>T</math> is unique if and only if <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, that is, <math>A_0, A_1,\ldots, A_n</math> are affinely independent. === Embedding ''n'' + 2 and ''n'' + 3 points === If <math>n+2</math> points <math>P_0, \ldots, P_{n+1}</math> can be embedded in <math>\mathbb{R}^n</math> as <math>A_0, \ldots, A_{n+1}</math>, then other than the conditions above, an additional necessary condition is that the <math>(n+1)</math>-simplex formed by <math>A_0, A_1,\ldots, A_{n+1}</math>, must have no <math>(n+1)</math>-dimensional volume. That is, <math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0</math>. The converse also holds. That is, if for all <math>k = 1, \ldots, n</math>, : <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> and : <math> \operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0, </math> then such an embedding exists. For embedding <math>n+3</math> points in <math>\mathbb{R}^n</math>, the necessary and sufficient conditions are similar: # For all <math>k = 1, \ldots, n</math>, <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0</math>; #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0;</math> # <math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+2}) = 0;</math> #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}, P_{n+2}) = 0.</math> === Embedding arbitrarily many points === The <math>n+3</math> case turns out to be sufficient in general. In general, given a semimetric space <math>(R, d)</math>, it can be isometrically embedded in <math>\mathbb{R}^n</math> if and only if there exists <math>P_0, \ldots, P_n\in R</math>, such that, for all <math>k = 1, \ldots, n</math>, <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0</math>, and for any <math>P_{n+1}, P_{n+2} \in R</math>, #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0;</math> #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+2}) = 0;</math> #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}, P_{n+2}) = 0.</math> And such embedding is unique up to isometry in <math>\mathbb{R}^n</math>. Further, if <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, then it cannot be isometrically embedded in any <math>\mathbb{R}^m, m < n</math>. And such embedding is unique up to unique isometry in <math>\mathbb{R}^n</math>. Thus, Cayley–Menger determinants give a concrete way to calculate whether a semimetric space can be embedded in <math>\mathbb{R}^n</math>, for some finite <math>n</math>, and if so, what is the minimal <math>n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)