Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Doomsday rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Computer formula for the anchor day of a year== For computer use, the following formulas for the anchor day of a year are convenient. For the Gregorian calendar: :<math>\mbox{anchor day} = \mbox{Tuesday} + y + \left\lfloor\frac{y}{4}\right\rfloor - \left\lfloor\frac{y}{100}\right\rfloor + \left\lfloor\frac{y}{400}\right\rfloor = \mbox{Tuesday} + 5\times (y\bmod 4) + 4\times (y\bmod 100) + 6\times (y\bmod 400)</math> For example, the doomsday 2009 is Saturday under the Gregorian calendar (the currently accepted calendar), since :<math>\mbox{Saturday (6)} \bmod 7 = \mbox{Tuesday (2)} + 2009 + \left\lfloor\frac{2009}{4}\right\rfloor - \left\lfloor\frac{2009}{100}\right\rfloor + \left\lfloor\frac{2009}{400}\right\rfloor</math> As another example, the doomsday 1946 is Thursday, since :<math>\mbox{Thursday (4)} \bmod 7 = \mbox{Tuesday (2)} + 1946 + \left\lfloor\frac{1946}{4}\right\rfloor - \left\lfloor\frac{1946}{100}\right\rfloor + \left\lfloor\frac{1946}{400}\right\rfloor</math> For the Julian calendar: :<math>\mbox{anchor day} = \mbox{Sunday} + y + \left\lfloor\frac{y}{4}\right\rfloor = \mbox{Sunday}+ 5\times (y\bmod 4) + 3\times (y\bmod 7)</math> The formulas apply also for the [[proleptic Gregorian calendar]] and the [[proleptic Julian calendar]]. They use the [[floor function]] and [[astronomical year numbering]] for years BC. For comparison, see [[Julian day#Calculation|the calculation of a Julian day number]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)