Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dyadic transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to the Ising model== The Hamiltonian of the zero-field one-dimensional [[Ising model]] of <math>2N</math> spins with periodic boundary conditions can be written as :<math>H(\sigma) = g \sum_{i\in \mathbb{Z}_{2N}}\sigma_i\sigma_{i+1}. </math> Letting <math>C</math> be a suitably chosen normalization constant and <math>\beta</math> be the inverse temperature for the system, the partition function for this model is given by :<math>Z = \sum_{\{\sigma_i=\pm 1,\, i\in \mathbb{Z}_{2N}\}}\prod_{i\in \mathbb{Z}_{2N}}Ce^{-\beta g \sigma_i\sigma_{i+1}}. </math> We can implement the [[renormalization group]] by integrating out every other spin. In so doing, one finds that <math>Z</math> can also be equated with the partition function for a smaller system with but <math>N</math> spins, :<math>Z = \sum_{\{\sigma_i=\pm 1,\, i\in \mathbb{Z}_{N}\}}\prod_{i\in \mathbb{Z}_{N}}\mathcal{R}[C]e^{-\mathcal{R}[\beta g] \sigma_i\sigma_{i+1}}, </math> provided we replace <math>C</math> and <math>\beta g</math> with renormalized values <math>\mathcal{R}[C]</math> and <math>\mathcal{R}[\beta g]</math> satisfying the equations :<math>\mathcal{R}[C]^2= 4\cosh(2\beta g)C^4,</math> :<math>e^{-2\mathcal{R}[\beta g]}= \cosh(2\beta g).</math> Suppose now that we allow <math>\beta g</math> to be complex and that <math>\operatorname{Im}[2\beta g]=\frac{\pi}{2}+\pi n</math> for some <math>n\in \mathbb{Z}</math>. In that case we can introduce a parameter <math>t\in[0, 1)</math> related to <math>\beta g</math> via the equation :<math>e^{-2\beta g}= i\tan\big(\pi(t-\frac{1}{2})\big),</math> and the resulting renormalization group transformation for <math>t</math> will be precisely the dyadic map:<ref> M. Bosschaert; C. Jepsen; F. Popov, “Chaotic RG flow in tensor models”, Physical Review D, 105, 2022, p. 065021. </ref> :<math>\mathcal{R}[t]=2t \bmod 1 .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)