Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dynamic mechanical analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Temperature sweep==== A common test method involves measuring the complex modulus at low constant frequency while varying the sample temperature. A prominent peak in <math>\tan(\delta)</math> appears at the glass transition temperature of the polymer. Secondary transitions can also be observed, which can be attributed to the temperature-dependent activation of a wide variety of chain motions.<ref name = "Young">{{cite book|last=Young|first=R.J.|author2=P.A. Lovell|title=Introduction to Polymers|publisher=Nelson Thornes|year=1991|edition=2}}</ref> In [[semi-crystalline polymer]]s, separate transitions can be observed for the crystalline and amorphous sections. Similarly, multiple transitions are often found in polymer blends. For instance, blends of [[polycarbonate]] and poly([[acrylonitrile-butadiene-styrene]]) were studied with the intention of developing a polycarbonate-based material without polycarbonate's tendency towards [[brittle failure]]. Temperature-sweeping DMA of the blends showed two strong transitions coincident with the glass transition temperatures of PC and PABS, consistent with the finding that the two polymers were immiscible.<ref name=Mas>{{cite journal|last=J. MΓ s |year=2002|title=Dynamic mechanical properties of polycarbonate and acrylonitrile-butadiene-styrene copolymer blends|doi=10.1002/app.10043|journal=Journal of Applied Polymer Science|volume=83|issue=7|pages=1507β1516|display-authors=etal}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)