Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Complete elliptic integral of the second kind== <!-- This section was copied from [[Ellipse]] --> <!-- This section is redirected from [[Complete elliptic integral of the second kind]] --> [[Image:Mplwp complete ellipticEk.svg|thumb|300px|Plot of the complete elliptic integral of the second kind {{math|''E''(''k'')}}]] The '''complete elliptic integral of the second kind''' {{math|''E''}} is defined as <math display="block">E(k) = \int_0^\tfrac{\pi}{2} \sqrt{1-k^2 \sin^2\theta} \, d\theta = \int_0^1 \frac{\sqrt{1-k^2 t^2}}{\sqrt{1-t^2}} \, dt,</math> or more compactly in terms of the incomplete integral of the second kind {{math|''E''(''φ'',''k'')}} as <math display="block">E(k) = E\left(\tfrac{\pi}{2},k\right) = E(1;k).</math> For an ellipse with semi-major axis {{math|''a''}} and semi-minor axis {{math|''b''}} and eccentricity {{math|1=''e'' = {{sqrt|1 − ''b''<sup>2</sup>/''a''<sup>2</sup>}}}}, the complete elliptic integral of the second kind {{math|''E''(''e'')}} is equal to one quarter of the [[Ellipse#Circumference|circumference]] {{math|''C''}} of the ellipse measured in units of the semi-major axis {{math|''a''}}. In other words: <math display="block">C = 4 a E(e).</math> The complete elliptic integral of the second kind can be expressed as a [[power series]]<ref>{{Cite web|url=https://functions.wolfram.com/EllipticIntegrals/EllipticE/06/01/03/01/0003/|title=Complete elliptic integral of the second kind: Series representations (Formula 08.01.06.0002)}}</ref> <math display="block">E(k) = \frac{\pi}{2}\sum_{n=0}^\infty \left(\frac{(2n)!}{2^{2n} \left(n!\right)^2}\right)^2 \frac{k^{2n}}{1-2n},</math> which is equivalent to <math display="block">E(k) = \frac{\pi}{2}\left(1-\left(\frac12\right)^2 \frac{k^2}{1}-\left(\frac{1\cdot 3}{2\cdot 4}\right)^2 \frac{k^4}{3}-\cdots-\left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \frac{k^{2n}}{2n-1}-\cdots\right).</math> In terms of the [[Gauss hypergeometric function]], the complete elliptic integral of the second kind can be expressed as <math display="block">E(k) = \tfrac{\pi}{2} \,{}_2F_1 \left(\tfrac12, -\tfrac12; 1; k^2 \right).</math> The modulus can be transformed that way: <math display="block">E(k) = \left(1+\sqrt{1-k^2}\right)\,E\left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right) - \sqrt{1-k^2}\,K(k) </math> ===Computation=== Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using the [[arithmetic-geometric mean|arithmetic–geometric mean]].{{sfn|Carlson|2010|loc=19.8}} Define sequences {{mvar|a<sub>n</sub>}} and {{mvar|g<sub>n</sub>}}, where {{math|1=''a''<sub>0</sub> = 1}}, {{math|1=''g''<sub>0</sub> = {{sqrt|1 − ''k''<sup>2</sup>}} = ''k''{{prime}}}} and the recurrence relations {{math|1=''a''<sub>''n'' + 1</sub> = {{sfrac|''a<sub>n</sub>'' + ''g<sub>n</sub>''|2}}}}, {{math|1=''g''<sub>''n'' + 1</sub> = {{sqrt|''a<sub>n</sub> g<sub>n</sub>''}}}} hold. Furthermore, define <math display="block">c_n=\sqrt{\left|a_n^2-g_n^2\right|}.</math> By definition, <math display="block">a_\infty = \lim_{n\to\infty} a_n = \lim_{n\to\infty} g_n = \operatorname{agm}\left(1, \sqrt{1-k^2}\right).</math> Also <math display="block">\lim_{n\to\infty} c_n=0.</math> Then <math display="block">E(k) = \frac{\pi}{2a_\infty}\left(1-\sum_{n=0}^{\infty} 2^{n-1} c_n^2\right).</math> In practice, the arithmetic-geometric mean would simply be computed up to some limit. This formula converges quadratically for all {{math|{{abs|''k''}} ≤ 1}}. To speed up computation further, the relation {{math|1=''c''<sub>''n'' + 1</sub> = {{sfrac|''c<sub>n</sub>''<sup>2</sup>|4''a''<sub>''n'' + 1</sub>}}}} can be used. Furthermore, if {{math|1=''k''<sup>2</sup> = ''λ''(''i''{{sqrt|''r''}})}} and <math>r \isin \mathbb{Q}^+</math> (where {{mvar|λ}} is the [[modular lambda function]]), then {{math|''E''(''k'')}} is expressible in closed form in terms of <math display="block">K(k)=\frac{\pi}{2\operatorname{agm}\left(1,\sqrt{1-k^2}\right)}</math> and hence can be computed without the need for the infinite summation term. For example, {{math|1=''r'' = 1}}, {{math|1=''r'' = 3}} and {{math|1=''r'' = 7}} give, respectively,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 26, 161</ref> <math display="block">E\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{2}K\left(\frac{1}{\sqrt{2}}\right)+\frac{\pi}{4K\left(\frac{1}{\sqrt{2}}\right)},</math> and <math display="block">E\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)=\frac{3+\sqrt{3}}{6}K\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)+\frac{\pi\sqrt{3}}{12K\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)},</math> and <math display="block">E\left(\frac{3-\sqrt{7}}{4\sqrt{2}}\right)=\frac{7+2\sqrt{7}}{14}K\left(\frac{3-\sqrt{7}}{4\sqrt{2}}\right)+\frac{\pi\sqrt{7}}{28K\left(\frac{3-\sqrt{7}}{4\sqrt{2}}\right)}.</math> ===Derivative and differential equation=== <math display="block">\frac{dE(k)}{dk} = \frac{E(k)-K(k)}{k}</math> <math display="block">\left(k^2-1\right) \frac{d}{dk} \left( k \;\frac{dE(k)}{dk} \right) = k E(k)</math> A second solution to this equation is {{math|''E''({{sqrt|1 − ''k''<sup>2</sup>}}) − ''K''({{sqrt|1 − ''k''<sup>2</sup>}})}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)