Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Erlang distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== * The Erlang distribution is the distribution of the sum of ''k'' [[independent and identically distributed random variables]], each having an [[exponential distribution]]. The long-run rate at which events occur is the reciprocal of the expectation of <math>X,</math> that is, <math>\lambda/k.</math> The (age specific event) rate of the Erlang distribution is, for <math>k>1,</math> monotonic in <math>x,</math> increasing from 0 at <math>x=0,</math> to <math>\lambda</math> as <math>x</math> tends to infinity.<ref>Cox, D.R. (1967) ''Renewal Theory'', p20, Methuen.</ref> ** That is: if <math> X_i \sim \operatorname{Exponential}(\lambda),</math> then <math display="block"> \sum_{i=1}^k{X_i} \sim \operatorname{Erlang}(k, \lambda)</math> * Because of the factorial function in the denominator of the [[#Probability density function|PDF]] and [[#Cumulative distribution function (CDF)|CDF]], the Erlang distribution is only defined when the parameter ''k'' is a positive integer. In fact, this distribution is sometimes called the '''Erlang-''k'' distribution''' (e.g., an Erlang-2 distribution is an Erlang distribution with <math>k=2</math>). The [[gamma distribution]] generalizes the Erlang distribution by allowing ''k'' to be any positive real number, using the [[gamma function]] instead of the factorial function. ** That is: if k is an [[integer]] and <math> X \sim \operatorname{Gamma}(k, \lambda),</math> then <math> X \sim \operatorname{Erlang}(k, \lambda)</math> *If <math> U \sim \operatorname{Exponential}(\lambda)</math> and <math> V \sim \operatorname{Erlang}(n, \lambda)</math> then <math> \frac{U}{V}+1 \sim \operatorname{Pareto}(1, n)</math> *The Erlang distribution is a special case of the [[Pearson distribution|Pearson type III distribution]]{{citation needed|date=March 2016}} *The Erlang distribution is related to the [[chi-squared distribution]]. If <math> X \sim \operatorname{Erlang}(k,\lambda),</math> then <math> 2\lambda X\sim \chi^2_{2k}.</math>{{citation needed|date=March 2016}} *The Erlang distribution is related to the [[Poisson distribution]] by the [[Poisson process]]: If <math> S_n = \sum_{i=1}^n X_i</math> such that <math> X_i \sim \operatorname{Exponential}(\lambda),</math> then <math display="block"> S_n \sim \operatorname{Erlang}(n, \lambda)</math> and <math display="block"> \operatorname{Pr}(N(x) \leq n - 1) = \operatorname{Pr}(S_n > x) = 1 - F_X(x; n, \lambda) = \sum_{k=0}^{n-1} \frac{1}{k!}e^{-\lambda x} (\lambda x)^k.</math> Taking the differences over <math>n</math> gives the Poisson distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)