Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euclidean minimum spanning tree
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Dynamic and kinetic=== The Euclidean minimum spanning tree has been generalized in many different ways to systems of moving or changing points: *If a set of points undergoes a sequence of dynamic insertions or deletions of points, each of these updates induces a bounded amount of change to the minimum spanning tree of the points. When the update sequence is known in advance, for points in the plane, the change after each insertion or deletion can be found in time <math>O(\log^2 n)</math> per insertion or deletion.{{r|offline}} When the updates must be handled in an [[Online algorithm|online]] manner, a slower (but still poly-logarithmic) <math>O(\log^{10} n)</math> time bound is known.{{r|chadyn}} For higher-dimensional versions of the problem the time per update is slower, but still sublinear.{{r|extrema}} *For <math>n</math> points moving linearly with constant speed, or with more general algebraic motions, the minimum spanning tree will change by a sequence of swaps, in which one edge is removed and another replaces it at a point in time where both have equal length.{{r|kti}} For linear motions, the number of changes is at most slightly larger than <math>n^{25/9}</math>.{{r|chalev}} For more general algebraic motions, there is a near-cubic upper bound on the number of swaps, based on the theory of [[Davenport–Schinzel sequence]]s.{{r|rzcomb}} *The ''minimum moving spanning tree problem'' again concerns points moving linearly with constant speed, over an interval of time, and seeks a single tree that minimizes the maximum sum of weights occurring at any instant during this interval. It is [[NP-hard]] to compute exactly, but can be approximated to within a factor of two in polynomial time.{{r|abb}} *The [[kinetic Euclidean minimum spanning tree]] problem asks for a [[kinetic data structure]] that can maintain the minimum spanning tree as its points undergo both continuous motions and insertions and deletions. Several papers have studied such structures,{{r|bgz|aegh|rzkin|rakwz|msvw}} and a kinetic structure for algebraically moving points with near-cubic total time, nearly matching the bound on the number of swaps, is known.{{r|rakwz}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)