Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Dirichlet series generating functions (DGFs)=== [[Formal Dirichlet series]] are often classified as generating functions, although they are not strictly formal power series. The ''Dirichlet series generating function'' of a sequence {{math|''a''<sub>''n''</sub>}} is:<ref name="W56">{{harvnb|Wilf|1994|p=56}}</ref> <math display="block">\operatorname{DG}(a_n;s)=\sum _{n=1}^\infty \frac{a_n}{n^s}.</math> The Dirichlet series generating function is especially useful when {{math|''a''<sub>''n''</sub>}} is a [[multiplicative function]], in which case it has an [[Euler product]] expression<ref name="W59">{{harvnb|Wilf|1994|p=59}}</ref> in terms of the function's Bell series: <math display="block">\operatorname{DG}(a_n;s)=\prod_{p} \operatorname{BG}_p(a_n;p^{-s})\,.</math> If {{math|''a''<sub>''n''</sub>}} is a [[Dirichlet character]] then its Dirichlet series generating function is called a [[Dirichlet L-series|Dirichlet {{mvar|L}}-series]]. We also have a relation between the pair of coefficients in the [[Lambert series]] expansions above and their DGFs. Namely, we can prove that: <math display="block">[x^n] \operatorname{LG}(a_n; x) = b_n</math>if and only if <math display="block">\operatorname{DG}(a_n;s) \zeta(s) = \operatorname{DG}(b_n;s),</math>where {{math|''ΞΆ''(''s'')}} is the [[Riemann zeta function]].<ref>{{cite book |last1=Hardy |first1=G.H. |last2=Wright |first2=E.M. |last3=Heath-Brown |first3=D.R |last4=Silverman |first4=J.H. |title=An Introduction to the Theory of Numbers|url=https://archive.org/details/introductiontoth00ghha_922|url-access=limited|publisher=Oxford University Press |page=[https://archive.org/details/introductiontoth00ghha_922/page/n357 339]|edition=6th |isbn=9780199219858 |year=2008}}</ref> The sequence {{mvar|a<sub>k</sub>}} generated by a [[Dirichlet series]] generating function (DGF) corresponding to:<math display="block">\operatorname{DG}(a_k;s)=\zeta(s)^m</math>has the ordinary generating function:<math display="block">\sum_{k=1}^{k=n} a_k x^k = x + \binom{m}{1} \sum_{2 \leq a \leq n} x^{a} + \binom{m}{2}\underset{ab \leq n}{\sum_{a = 2}^\infty \sum_{b = 2}^\infty} x^{ab} + \binom{m}{3}\underset{abc \leq n}{\sum_{a = 2}^\infty \sum_{c = 2}^\infty \sum_{b = 2}^\infty} x^{abc} + \binom{m}{4}\underset{abcd \leq n}{\sum_{a = 2}^\infty \sum_{b = 2}^\infty \sum_{c = 2}^\infty \sum_{d = 2}^\infty} x^{abcd} + \cdots</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)