Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Green's function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Table of Green's functions=== {{Disputed section|Dimensional inconsistencies and wrong scaling|date=April 2025}} The following table gives an overview of Green's functions of frequently appearing differential operators, where {{nowrap|<math display="inline"> r = \sqrt{x^2 + y^2 + z^2}</math>,}} {{nowrap|<math display="inline"> \rho = \sqrt{x^2 + y^2}</math>,}} <math display="inline"> \Theta(t)</math> is the [[Heaviside step function]], <math display="inline"> J_\nu(z)</math> is a [[Bessel function]], <math display="inline"> I_\nu(z)</math> is a [[modified Bessel function of the first kind]], and <math display="inline"> K_\nu(z)</math> is a [[modified Bessel function of the second kind]].<ref>some examples taken from {{cite book | last = Schulz | first = Hermann | title = Physik mit Bleistift: das analytische Handwerkszeug des Naturwissenschaftlers | date = 2001 | publisher = Deutsch | isbn = 978-3-8171-1661-4 | edition = 4. Aufl | location = Frankfurt am Main}}</ref> Where time ({{mvar|t}}) appears in the first column, the retarded (causal) Green's function is listed. {| class="wikitable" |- ! Differential operator {{math|''L''}} !! Green's function {{mvar|G}} !! Example of application |- | <math>\partial_t^{n+1}</math> || <math>\frac{t^n}{n!} \Theta(t)</math> || |- | <math>\partial_t + \gamma </math> || <math>\Theta(t) e^{-\gamma t}</math> || |- | <math>\left(\partial_t + \gamma \right)^2</math> || <math>\Theta(t)t e^{-\gamma t}</math> || |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma < \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} \, \frac{\sin(\omega t)}{\omega}</math> with <math>\omega=\sqrt{\omega_0^2-\gamma^2}</math>|| [[Harmonic oscillator#Damped harmonic oscillator|1D underdamped harmonic oscillator]] |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma > \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} \, \frac{\sinh(\omega t)}{\omega}</math> with <math>\omega = \sqrt{\gamma^2-\omega_0^2}</math>|| 1D overdamped harmonic oscillator |- | <math>\partial_t^2 + 2\gamma\partial_t + \omega_0^2</math> where <math> \gamma = \omega_0 </math> || <math>\Theta(t) e^{-\gamma t} t</math> || 1D critically damped harmonic oscillator |- | 1D Laplace operator <math> \frac {d^2}{dx^2} </math> | <math> \left(x - s\right) \Theta(x-s) + x\alpha (s) + \beta(s) </math> | 1D Poisson equation |- | [[Laplace operator#Two dimensions|2D Laplace operator]] <math>\nabla^2_{\text{2D}} = \partial_x^2 + \partial_y^2</math> || <math>\frac{1}{2 \pi}\ln \rho </math> with <math>\rho=\sqrt{x^2+y^2}</math>|| 2D Poisson equation |- | [[Laplace operator#Three dimensions| 3D Laplace operator]] <math>\nabla^2_{\text{3D}} = \partial_x^2 + \partial_y^2 + \partial_z^2</math> || <math>-\frac{1}{4 \pi r}</math> with <math> r = \sqrt{x^2 + y^2 + z^2} </math> || [[Poisson equation]] |- | [[Helmholtz equation|Helmholtz operator]] <math>\nabla^2_{\text{3D}} + k^2</math> || <math>\frac{-e^{-ikr}}{4 \pi r} = i \sqrt{\frac{k}{32 \pi r}} H^{(2)}_{1/2}(kr) = i \frac{k}{4\pi} \, h^{(2)}_{0}(kr)</math> {{br}} where <math>H_\alpha^{(2)}</math> is the [[Hankel function of the second kind]], and <math>h_0^{(2)}</math> is the [[spherical Hankel function of the second kind]] || stationary 3D [[Schrödinger equation]] for [[free particle]] |- |Divergence operator <math>\nabla \cdot \mathbf{v}</math> |<math>\frac{1}{4 \pi} \frac{\mathbf{x} - \mathbf{x}_0}{\left\|\mathbf{x} - \mathbf{x}_0\right\|^3} </math> | |- | <math>\nabla^2 - k^2</math> in <math>n</math> dimensions || <math>- \left(2\pi\right)^{-n/2} \left(\frac{k}{r}\right)^{n/2-1} K_{n/2-1}(kr)</math>|| [[Yukawa potential]], [[Propagator#Feynman propagator|Feynman propagator]], [[Screened Poisson equation]] |- | <math>\partial_t^2 - c^2\partial_x^2</math>|| <math>\frac{1}{2c} \Theta(ct - x)</math>|| 1D [[wave equation]] |- | <math>\partial_t^2 - c^2\,\nabla^2_{\text{2D}}</math>|| <math>\frac{\Theta(ct - \rho)}{2\pi c\sqrt{c^2t^2 - \rho^2}}</math>|| 2D [[wave equation]] |- | [[D'Alembert operator]] <math>\square = \frac{1}{c^2}\partial_t^2 - \nabla^2_{\text{3D}}</math>|| <math>\frac{1}{4 \pi r} \delta\left(t-\frac{r}{c}\right)</math>|| 3D [[wave equation]] |- | <math>\partial_t - k\partial_x^2</math>|| <math>\left(\frac{1}{4\pi kt}\right)^{1/2} \Theta(t) e^{-x^2/4kt}</math>|| 1D [[diffusion]] |- | <math>\partial_t - k\,\nabla^2_{\text{2D}}</math>|| <math>\left(\frac{1}{4\pi kt}\right) \Theta(t) e^{-\rho^2/4kt}</math>|| 2D [[diffusion]] |- | <math>\partial_t - k\,\nabla^2_{\text{3D}}</math>|| <math>\left(\frac{1}{4\pi kt}\right)^{3/2} \Theta(t) e^{-r^2/4kt}</math>|| 3D [[diffusion]] |- | <math>\frac{1}{c^2}\partial_t^2 - \partial_x^2+\mu^2</math>|| <math>\begin{align} &\tfrac{1}{2} \left(1-\sin{\mu ct}\right) \left[\delta(ct-x) + \delta(ct+x)\right] \\[0.5ex] &+\tfrac{1}{2} \mu \Theta(ct - |x|) J_0(\mu u) \end{align} </math> {{br}} with <math> u = \sqrt{c^2 t^2 - x^2}</math>|| 1D [[Klein–Gordon equation]] |- | <math>\frac{1}{c^2}\partial_t^2 - \nabla^2_{\text{2D}}+\mu^2</math>|| <math>\begin{align} &\frac{\delta(ct-\rho)}{4\pi\rho} \left(1 + \cos(\mu ct)\right) \\[0.5ex] &+ \frac{\mu^2\Theta(ct - \rho)}{4\pi} \operatorname{sinc}(\mu u) \end{align}</math> {{br}} with <math> u=\sqrt{c^2t^2-\rho^2} </math>|| 2D [[Klein–Gordon equation]] |- | <math>\square + \mu^2</math>|| <math>\frac{1}{4\pi r} \delta{\left(t - \frac{r}{c}\right)} + \frac{\mu c}{4\pi u} \Theta(ct - r) J_1{\left(\mu u\right)}</math> with <math> u = \sqrt{c^2t^2-r^2}</math>|| 3D [[Klein–Gordon equation]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\partial_x^2</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{2} \left[ \delta(ct - x) + \delta(ct + x) \right] \\[0.5ex] &+ \frac{e^{-\gamma t}}{2} \Theta(ct - |x|) \left(k I_0(k u) + \frac{\gamma t}{u} I_1(k u)\right) \end{align}</math> {{br}} with <math> u=\sqrt{c^2t^2-x^2}</math> and <math>k = \gamma / c </math>|| [[telegrapher's equation]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\,\nabla^2_{\text{2D}}</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{4\pi\rho} \delta(ct-\rho) \left(1 + e^{-\gamma t} + 3\gamma t\right) \\ &+ \frac{e^{-\gamma t}}{4\pi u^2} \Theta(ct - \rho) \left(\frac{k u^2 - 3 c t}{c u} \sinh\left(k u\right) + 3\gamma t \cosh\left(k u\right)\right) \end{align}</math> {{br}} with <math> u = \sqrt{c^2 t^2 - \rho^2}</math> and <math>k = \gamma / c</math>|| 2D [[relativistic heat conduction]] |- | <math>\partial_t^2 + 2\gamma\partial_t - c^2\,\nabla^2_{\text{3D}}</math> | <math>\begin{align} &\frac{e^{-\gamma t}}{20\pi r^2} \delta(ct - r) \left(8 - 3e^{-\gamma t} + 2\gamma t + 4\gamma^2 t^2\right) \\[0.5ex] &+ \frac{k e^{-\gamma t}}{20 \pi u} \Theta(ct - r) \left(k I_1(k u) + \frac{4 \gamma t}{u} I_2(k u)\right) \end{align}</math> {{br}} with <math> u = \sqrt{c^2 t^2 - r^2}</math> and <math>k = \gamma / c</math>|| 3D [[relativistic heat conduction]] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)