Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Image (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== # <math>f : \{ 1, 2, 3 \} \to \{ a, b, c, d \}</math> defined by <math> \left\{\begin{matrix} 1 \mapsto a, \\ 2 \mapsto a, \\ 3 \mapsto c. \end{matrix}\right. </math>{{paragraph break}} The ''image'' of the set <math>\{ 2, 3 \}</math> under <math>f</math> is <math>f(\{ 2, 3 \}) = \{ a, c \}.</math> The ''image'' of the function <math>f</math> is <math>\{ a, c \}.</math> The ''preimage'' of <math>a</math> is <math>f^{-1}(\{ a \}) = \{ 1, 2 \}.</math> The ''preimage'' of <math>\{ a, b \}</math> is also <math>f^{-1}(\{ a, b \}) = \{ 1, 2 \}.</math> The ''preimage'' of <math>\{ b, d \}</math> under <math>f</math> is the [[empty set]] <math>\{ \ \} = \emptyset.</math> # <math>f : \R \to \R</math> defined by <math>f(x) = x^2.</math>{{paragraph break}} The ''image'' of <math>\{ -2, 3 \}</math> under <math>f</math> is <math>f(\{ -2, 3 \}) = \{ 4, 9 \},</math> and the ''image'' of <math>f</math> is <math>\R^+</math> (the set of all positive real numbers and zero). The ''preimage'' of <math>\{ 4, 9 \}</math> under <math>f</math> is <math>f^{-1}(\{ 4, 9 \}) = \{ -3, -2, 2, 3 \}.</math> The ''preimage'' of set <math>N = \{ n \in \R : n < 0 \}</math> under <math>f</math> is the empty set, because the negative numbers do not have square roots in the set of reals. # <math>f : \R^2 \to \R</math> defined by <math>f(x, y) = x^2 + y^2.</math>{{paragraph break}} The [[Fiber (mathematics)|''fibers'']] <math>f^{-1}(\{ a \})</math> are [[concentric circles]] about the [[Origin (mathematics)|origin]], the origin itself, and the [[empty set]] (respectively), depending on whether <math>a > 0, \ a = 0, \text{ or } \ a < 0</math> (respectively). (If <math>a \ge 0,</math> then the ''fiber'' <math>f^{-1}(\{ a \})</math> is the set of all <math>(x, y) \in \R^2</math> satisfying the equation <math>x^2 + y^2 = a,</math> that is, the origin-centered circle with radius <math>\sqrt{a}.</math>) # If <math>M</math> is a [[manifold]] and <math>\pi : TM \to M</math> is the canonical [[Projection (mathematics)|projection]] from the [[tangent bundle]] <math>TM</math> to <math>M,</math> then the ''fibers'' of <math>\pi</math> are the [[tangent spaces]] <math>T_x(M) \text{ for } x \in M.</math> This is also an example of a [[fiber bundle]]. # A [[quotient group]] is a homomorphic ''image''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)