Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Submodules, quotients, products, and sums, Bass-Papp Theorem=== Any [[product (category theory)|product]] of (even infinitely many) injective modules is injective; conversely, if a direct product of modules is injective, then each module is injective {{harv|Lam|1999|p=61}}. Every direct sum of finitely many injective modules is injective. In general, submodules, factor modules, or infinite [[direct sum of modules|direct sums]] of injective modules need not be injective. Every submodule of every injective module is injective if and only if the ring is [[Artinian ring|Artinian]] [[semisimple ring|semisimple]] {{harv|Golan|Head|1991|p=152}}; every factor module of every injective module is injective if and only if the ring is [[hereditary ring|hereditary]], {{harv|Lam|1999|loc=Th. 3.22}}. Bass-Papp Theorem states that every infinite direct sum of right (left) injective modules is injective if and only if the ring is right (left) [[Noetherian ring|Noetherian]], {{harv|Lam|1999|p=80-81|loc=Th 3.46}}.<ref>This is the [[Hyman Bass|Bass]]-Papp theorem, see {{harv|Papp|1959}} and {{harv|Chase|1960}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)