Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kernel (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Computation by Gaussian elimination== A [[Basis (linear algebra)|basis]] of the kernel of a matrix may be computed by [[Gaussian elimination]]. For this purpose, given an {{math|''m'' Γ ''n''}} matrix {{mvar|A}}, we construct first the row [[augmented matrix]] <math> \begin{bmatrix}A \\ \hline I \end{bmatrix},</math> where {{math|''I''}}<!-- necessary to ensure a serif font --> is the {{math|''n'' Γ ''n''}} [[identity matrix]]. Computing its [[column echelon form]] by Gaussian elimination (or any other suitable method), we get a matrix <math> \begin{bmatrix} B \\\hline C \end{bmatrix}.</math> A basis of the kernel of {{Mvar|A}} consists in the non-zero columns of {{mvar|C}} such that the corresponding column of {{mvar|B}} is a [[zero matrix|zero column]]. In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero. For example, suppose that <math display="block">A = \begin{bmatrix} 1 & 0 & -3 & 0 & 2 & -8 \\ 0 & 1 & 5 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 & 7 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}. </math> Then <math display="block"> \begin{bmatrix} A \\ \hline I \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 & 0 & 2 & -8 \\ 0 & 1 & 5 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 & 7 & -9 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}. </math> Putting the upper part in column echelon form by column operations on the whole matrix gives <math display="block"> \begin{bmatrix} B \\ \hline C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 3 & -2 & 8 \\ 0 & 1 & 0 & -5 & 1 & -4 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -7 & 9 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}. </math> The last three columns of {{mvar|B}} are zero columns. Therefore, the three last vectors of {{mvar|C}}, <math display="block">\left[\!\! \begin{array}{r} 3 \\ -5 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} \right] ,\; \left[\!\! \begin{array}{r} -2 \\ 1 \\ 0 \\ -7 \\ 1 \\ 0 \end{array} \right],\; \left[\!\! \begin{array}{r} 8 \\ -4 \\ 0 \\ 9 \\ 0 \\ 1 \end{array} \right] </math> are a basis of the kernel of {{mvar|A}}. Proof that the method computes the kernel: Since column operations correspond to post-multiplication by invertible matrices, the fact that <math>\begin{bmatrix} A \\ \hline I \end{bmatrix}</math> reduces to <math>\begin{bmatrix} B \\ \hline C \end{bmatrix}</math> means that there exists an invertible matrix <math>P</math> such that <math> \begin{bmatrix} A \\ \hline I \end{bmatrix} P = \begin{bmatrix} B \\ \hline C \end{bmatrix}, </math> with <math>B</math> in column echelon form. Thus {{nowrap|<math>AP = B</math>,}} {{nowrap|<math>IP = C </math>,}} and {{nowrap|<math> AC = B </math>.}} A column vector <math>\mathbf v</math> belongs to the kernel of <math>A</math> (that is <math>A \mathbf v = \mathbf 0</math>) if and only if <math>B \mathbf w = \mathbf 0,</math> where {{nowrap|<math>\mathbf w = P^{-1} \mathbf v = C^{-1} \mathbf v</math>.}} As <math>B</math> is in column echelon form, {{nowrap|<math>B \mathbf w = \mathbf 0</math>,}} if and only if the nonzero entries of <math>\mathbf w</math> correspond to the zero columns of {{nowrap|<math>B</math>.}} By multiplying by {{nowrap|<math>C</math>,}} one may deduce that this is the case if and only if <math>\mathbf v = C \mathbf w</math> is a linear combination of the corresponding columns of {{nowrap|<math>C</math>.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)