Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lockheed Martin F-22 Raptor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Avionics=== [[File:F-22 put out Flare.jpg|thumb|left|An F-22 releases a flare during a training flight]] The aircraft has an integrated avionics system where through sensor fusion, data from all onboard sensor systems as well as off-board inputs are filtered and processed into a combined tactical picture, thus enhancing the pilot's [[situational awareness]] and reducing workload. Key mission systems include [[Sanders Associates|Sanders]]/General Electric AN/ALR-94 electronic warfare system, [[Martin Marietta]] AN/AAR-56 [[infrared]] and [[ultraviolet]] [[Missile Approach Warning|Missile Launch Detector]] (MLD), [[Northrop Grumman Electronic Systems|Westinghouse]]/[[Texas Instruments]] [[AN/APG-77]] [[active electronically scanned array]] (AESA) radar, [[TRW Inc.|TRW]] Communication/Navigation/Identification (CNI) suite, and [[Raytheon]] <!--AN/ASG-XX -->advanced [[infrared search and track]] (IRST) being tested.<ref name="F22greenbats">{{cite web |url=https://www.thedrive.com/the-war-zone/f-22-raptor-being-readied-for-aim-260-missile-by-green-bats-testers |last=Hunter |first=Jamie |title=F-22 Raptor Being Readied for AIM-260 Missile by Green Bats Testers |work=The War Zone |date=11 August 2022 |access-date=21 August 2022 |archive-date=15 August 2022 |archive-url=https://web.archive.org/web/20220815231133/https://www.thedrive.com/the-war-zone/f-22-raptor-being-readied-for-aim-260-missile-by-green-bats-testers |url-status=live}}</ref><ref>{{cite web |last=Tirpak |first=John |url=https://www.airandspaceforces.com/new-f-22-sensors-service-life/ |title=New F-22 Sensors Could Help Extend the Raptor's Service Life |work=Air and Space Forces Magazine |publisher=Air and Space Forces Association |date=20 August 2024}}</ref><ref>[https://helitavia.com/avionics/TheAvionicsHandbook_Cap_32.pdf The F-22 avionics architecture is characterized as a common, modular, highly integrated system.]</ref> The APG-77 radar has a low-observable, active-aperture, electronically scanned antenna with multiple target [[track-while-scan]] in all weather conditions; the antenna is tilted back for stealth. Its emissions can be focused to overload enemy sensors as an [[Radar jamming and deception|electronic attack]] capability. The radar changes frequencies more than 1,000 times per second to [[Low probability of intercept radar|lower interception probability]] and has an estimated range of {{convert|125|-|150|mi|km|abbr=on}} against an {{convert|1|m2|sqft|abbr=on|order=flip}} target and {{convert|250|mi|km|abbr=on}} or more in narrow beams. The upgraded APG-77(V)1 provides air-to-ground functionality through synthetic aperture radar (SAR) mapping, [[Moving target indication|ground moving target indication/track]] (GMTI/GMTT), and strike modes.<ref name="apg77v1fi"/><ref name="avweek_20070107">{{cite web |last1=Fulghum |first1=D.A. |last2=Fabey |first2=M.J |archive-url=https://web.archive.org/web/20150924005256/http://www.f22-raptor.com/media/documents/aviation_week_010807.pdf |archive-date=24 September 2015 |title=F-22 Combat Ready |work=[[Aviation Week]] |date=8 January 2007 |url=http://www.f22-raptor.com/media/documents/aviation_week_010807.pdf |access-date=7 November 2009}}</ref> The ALR-94 electronic warfare system, among the most technically complex equipment on the F-22, integrates more than 30 antennas blended into the wings and fuselage for all-round [[radar warning receiver]] (RWR) coverage and threat geolocation. It can be used as a passive detector capable of searching targets at ranges (250+ [[Nautical mile|nmi]]) exceeding the radar's, and can provide enough information for a target lock and cue radar emissions to a [[pencil (optics)|narrow beam]] (down to 2Β° by 2Β° in azimuth and elevation). Depending on the detected threat, the defensive systems can prompt the pilot to release countermeasures such as flares or chaff. The MLD uses six sensors to provide [[all-aspect|full spherical]] infrared coverage while the advanced IRST, housed in a stealthy wing pod, is a narrow field-of-view sensor for long-range passive identification and targeting.<ref name="mld">{{cite web |url=http://www.lockheedmartin.com/us/products/MissileLaunchDetector.html |title=Missile Launch Detector (MLD) |publisher=Lockheed Martin |access-date=10 November 2012 |archive-url=https://web.archive.org/web/20121017101911/http://www.lockheedmartin.com/us/products/MissileLaunchDetector.html |archive-date=17 October 2012 |url-status=live}}</ref> To ensure stealth in the radio frequency spectrum, CNI emissions are strictly controlled and confined to specific sectors, with tactical communication between F-22s performed using the directional Inter/Intra-Flight Data Link (IFDL); the integrated CNI system, which incorporates a MIDS-JTRS terminal, also manages [[TACAN]], IFF (including [[Aviation transponder interrogation modes|Mode 5]]), and communication through various methods such as [[HAVE QUICK]]/SATURN and [[SINCGARS]].<ref>Klass, Philip J. "Sanders Will Give BAE Systems Dominant Role in Airborne EW." ''Aviation Week'', Volume 153, issue 5, 31 July 2000, p. 74.</ref><ref name="fighter_EW_next">Sweetman 2000, pp. 41β47.</ref> The aircraft was also upgraded with an automatic ground collision avoidance system (GCAS).<ref>{{cite web |last=Tirpak |first=John |url=https://www.airforcemag.com/air-force-starts-fielding-auto-ground-collision-avoidance-system-in-f-35s/ |title=Air Force Starts Fielding Auto Ground Collision Avoidance System in F-35s |work=Air Force Magazine |date=25 July 2019 |access-date=31 March 2020 |archive-date=31 July 2020 |archive-url=https://web.archive.org/web/20200731040726/https://www.airforcemag.com/air-force-starts-fielding-auto-ground-collision-avoidance-system-in-f-35s/ |url-status=live}}</ref> [[File:CIP F-22.jpg|thumb|A CIP unit for the F-22]] Information from radar, CNI, and other sensors are processed by two [[Hughes Electronics|Hughes]] Common Integrated Processor (CIP) mission computers, each capable of processing up to 10.5 billion [[instructions per second]].<ref>{{cite magazine |author=<!--Staff writer(s); no by-line.--> |title=Air Dominance With The F-22 Raptor |url= https://www.scribd.com/document/653138229/Avionics-Magazine-Air-Dominance-With-the-F-22-Raptor-AVIlockheed2j |magazine=Avionics Magazine |location=Rockville, MD |publisher=Access Intelligence |date=2002 |access-date=1 June 2023}}</ref><ref>{{cite report |url=https://apps.dtic.mil/sti/pdfs/ADA301209.pdf |title=Defense Science Board report on Concurrency and Risk of the F-22 program |archive-url=https://web.archive.org/web/20121201111826/http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA301209&Location=U2&doc=GetTRDoc.pdf |archive-date=1 December 2012 |publisher=Defense Science Board |date=April 1995 |access-date=31 August 2011}}</ref> The F-22's baseline software has some 1.7 million [[source lines of code|lines of code]], the majority involving the mission systems such as processing radar data.<ref>Pace 1999, p. 58.</ref> The highly integrated nature of the avionics architecture system, as well as the use of the programming language [[Ada (programming language)|Ada]],{{refn|Former Secretary of the USAF Michael Wynne blamed the use of the DoD's Ada for cost overruns and delays on many military projects, including the F-22, mistakenly referring to Ada as an operating system rather than a programming language, and citing "the scramble to retain talent for ADA when careers were being made in DOS, Apple and LINUX".<ref name=Wynne_Terminate_F-22>Wynne, Michael. [https://sldinfo.com/2009/10/michael-wynne-on-the-industrial-impact-of-the-decision-to-terminate-the-f-22-program/ "Michael Wynne on: The Industrial Impact of the Decision to Terminate the F-22 Program."] {{Webarchive |url=https://web.archive.org/web/20190331131234/https://sldinfo.com/2009/10/michael-wynne-on-the-industrial-impact-of-the-decision-to-terminate-the-f-22-program/ |date=31 March 2019}} ''Second Line of Defense'', 2 October 2009. Retrieved 31 August 2011.</ref>|group=N}} has made the development and testing of upgrades challenging. To enable more rapid upgrades, the CIPs were upgraded with [[Curtiss-Wright]] open mission systems (OMS) processor modules as well as a modular open systems architecture called the Open Systems Enclave (OSE) orchestration platform to allow the avionics suite to interface with [[Containerization (computing)|containerized]] software from third-party vendors.<ref name="raptorroadmap2019"/><ref>{{cite web |url=https://aviationweek.com/defense-space/sensors-electronic-warfare/flight-test-clears-f-22-fleet-accept-third-party-software |title=Flight Test Clears F-22 Fleet To Accept Third-Party Software |work=Aviation Week |date=30 August 2022 |access-date=31 August 2022 |archive-date=31 August 2022 |archive-url=https://web.archive.org/web/20220831204858/https://aviationweek.com/defense-space/sensors-electronic-warfare/flight-test-clears-f-22-fleet-accept-third-party-software |url-status=live}}</ref> The F-22's ability to operate close to the battlefield gives the aircraft threat detection and identification capability comparative with the [[Rivet Joint|RC-135 Rivet Joint]], and the ability to function as a "mini-[[Airborne early warning and control|AWACS]]", though its radar is less powerful than those of dedicated platforms. This allows the F-22 to rapidly designate targets for allies and coordinate friendly aircraft.<ref name="avweek_20070107"/><ref>{{cite web |last=Pawlyk |first=Oriana |url= https://www.military.com/daily-news/2017/06/27/the-f22-syria-deconflicting-not-dog-fighting.html |title= The F-22 in Syria: Deconflicting, Not Dog-Fighting |date=27 June 2017 |work=Military.com}}</ref> Although communication with other aircraft types was initially limited to voice, upgrades have enabled data to be transferred through a [[Battlefield Airborne Communications Node]] (BACN) or via JTIDS/[[Link 16]] traffic through MIDS-JTRS.<ref name=mids-j>{{cite web |url= https://www.intelligent-aerospace.com/military/article/14187849/bae-f-22-friend-or-foe |title= BAE Systems receives certification for F-22 friend-or-foe capability |work= Intelligent Aerospace |date= 23 November 2020 |access-date= 26 September 2021 |archive-date= 26 September 2021 |archive-url= https://web.archive.org/web/20210926014451/https://www.intelligent-aerospace.com/military/article/14187849/bae-f-22-friend-or-foe |url-status= live}}</ref> The [[IEEE 1394]]B [[Bus (computing)|bus]] developed for the F-22 was derived from the commercial IEEE 1394 "FireWire" bus system.<ref name="avweek_20070205">Philips, E.H. "The Electric Jet." ''Aviation Week'', 5 February 2007.</ref> In 2007, the F-22's radar was tested as a wireless data transceiver, transmitting data at 548 megabits per second and receiving at gigabit speed, far faster than the Link 16 system.<ref>Page, Lewis. [https://www.theregister.co.uk/2007/06/19/super_stealth_jet_acts_as_flying_wifi_hotspots/ "F-22 superjets could act as flying Wi-Fi hotspots."] {{Webarchive|url=https://web.archive.org/web/20101005080754/http://www.theregister.co.uk/2007/06/19/super_stealth_jet_acts_as_flying_wifi_hotspots/ |date=5 October 2010}} ''The Register'', 19 June 2007. Retrieved 7 November 2009.</ref> The radio frequency receivers of the electronic support measures (ESM) system give the aircraft the ability to perform [[intelligence, surveillance, and reconnaissance]] (ISR) tasks.<ref>{{cite web |author=Reed, John. |url=http://www.airforcetimes.com/news/2009/12/airforce_deptula_121909/ |archive-url=https://archive.today/20120604212938/http://www.airforcetimes.com/news/2009/12/airforce_deptula_121909/ |archive-date=4 June 2012 |title=Official: Fighters should be used for spying |work=Air Force Times |date=20 December 2009 |access-date=9 May 2010}}</ref><ref>{{cite web |last=Freedberg |first=Sydney |url= https://breakingdefense.com/2016/11/f-22-f-35-outsmart-test-ranges-awacs/ |title= F-22, F-35 Outsmart Test Ranges, AWACS |date=7 November 2016 |work=Breaking Defense}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)