Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Log-normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Arithmetic moments=== For any real or complex number {{mvar|n}}, the {{mvar|n}}-th [[moment (mathematics)|moment]] of a log-normally distributed variable {{mvar|X}} is given by<ref name="JKB"/> <math display="block">\operatorname{E}[X^n] = e^{n\mu + \frac{1}{2}n^2\sigma^2}.</math> Specifically, the arithmetic mean, expected square, arithmetic variance, and arithmetic standard deviation of a log-normally distributed variable {{mvar|X}} are respectively given by:<ref name=":1" /> <math display="block">\begin{align} \operatorname{E}[X] & = e^{\mu + \tfrac{1}{2}\sigma^2}, \\[4pt] \operatorname{E}[X^2] & = e^{2\mu + 2\sigma^2}, \\[4pt] \operatorname{Var}[X] & = \operatorname{E}[X^2] - \operatorname{E}[X]^2 = {\left(\operatorname{E}[X]\right)}^2 \left(e^{\sigma^2} - 1\right) \\[2pt] &= e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1\right), \\[4pt] \operatorname{SD}[X] & = \sqrt{\operatorname{Var}[X]} = \operatorname{E}[X] \sqrt{e^{\sigma^2} - 1} \\[2pt] &= e^{\mu + \tfrac{1}{2}\sigma^2} \sqrt{e^{\sigma^2} - 1}, \end{align}</math> The arithmetic [[coefficient of variation]] <math>\operatorname{CV}[X]</math> is the ratio <math>\tfrac{\operatorname{SD}[X]}{\operatorname{E}[X]}</math>. For a log-normal distribution it is equal to<ref name=":2" /> <math display="block">\operatorname{CV}[X] = \sqrt{e^{\sigma^2} - 1}.</math> This estimate is sometimes referred to as the "geometric CV" (GCV),<ref>Sawant, S.; Mohan, N. (2011) [http://pharmasug.org/proceedings/2011/PO/PharmaSUG-2011-PO08.pdf "FAQ: Issues with Efficacy Analysis of Clinical Trial Data Using SAS"] {{webarchive | url = https://web.archive.org/web/20110824094357/http://pharmasug.org/proceedings/2011/PO/PharmaSUG-2011-PO08.pdf | date = 24 August 2011 }}, ''PharmaSUG2011'', Paper PO08</ref><ref>{{cite journal | last1 = Schiff | first1 = MH | display-authors = etal | year = 2014 | title = Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses >=15 mg may be overcome with subcutaneous administration | journal = Ann Rheum Dis | volume = 73 | issue = 8 | pages = 1β3 | doi = 10.1136/annrheumdis-2014-205228 | pmid = 24728329 | pmc = 4112421}}</ref> due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters {{math|''ΞΌ''}} and {{math|''Ο''}} can be obtained, if the arithmetic mean and the arithmetic variance are known: <math display="block">\begin{align} \mu &= \ln \frac{\operatorname{E}[X]^2}{\sqrt{\operatorname{E}[X^2]}} = \ln \frac{\operatorname{E}[X]^2}{\sqrt{\operatorname{Var}[X] + \operatorname{E}[X]^2}}, \\[1ex] \sigma^2 &= \ln \frac{\operatorname{E}[X^2]}{\operatorname{E}[X]^2} = \ln \left(1 + \frac{\operatorname{Var}[X]}{\operatorname{E}[X]^2}\right). \end{align}</math> A probability distribution is not uniquely determined by the moments {{math|1=E[''X''<sup>''n''</sup>] = e<sup>''nΞΌ'' + {{sfrac|1|2}}''n''<sup>2</sup>''Ο''<sup>2</sup></sup>}} for {{math|''n'' β₯ 1}}. That is, there exist other distributions with the same set of moments.<ref name="JKB"/> In fact, there is a whole family of distributions with the same moments as the log-normal distribution.{{Citation needed|date=March 2012}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)