Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mapping class group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Torelli group == Notice that there is an induced action of the mapping class group on the [[homology (mathematics)|homology]] (and [[cohomology]]) of the space ''X''. This is because (co)homology is functorial and Homeo<sub>0</sub> acts trivially (because all elements are isotopic, hence homotopic to the identity, which acts trivially, and action on (co)homology is invariant under homotopy). The kernel of this action is the ''Torelli group'', named after the [[Torelli theorem]]. In the case of orientable surfaces, this is the action on first cohomology ''H''<sup>1</sup>(Ξ£) β '''Z'''<sup>2''g''</sup>. Orientation-preserving maps are precisely those that act trivially on top cohomology ''H''<sup>2</sup>(Ξ£) β '''Z'''. ''H''<sup>1</sup>(Ξ£) has a [[Symplectic geometry|symplectic]] structure, coming from the [[cup product]]; since these maps are automorphisms, and maps preserve the cup product, the mapping class group acts as symplectic automorphisms, and indeed all symplectic automorphisms are realized, yielding the [[short exact sequence]]: :<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}(\Sigma) \to \operatorname{Sp}(H^1(\Sigma)) \cong \operatorname{Sp}_{2g}(\mathbf{Z}) \to 1</math> One can extend this to :<math>1 \to \operatorname{Tor}(\Sigma) \to \operatorname{MCG}^*(\Sigma) \to \operatorname{Sp}^{\pm}(H^1(\Sigma)) \cong \operatorname{Sp}^{\pm}_{2g}(\mathbf{Z}) \to 1</math> The [[symplectic group]] is well understood. Hence understanding the algebraic structure of the mapping class group often reduces to questions about the Torelli group. Note that for the torus (genus 1) the map to the symplectic group is an isomorphism, and the Torelli group vanishes.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)