Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mathematical coincidence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Decimal coincidences === * <math>3^3+4^4+3^3+5^5=3435 </math>, making 3435 the only non-trivial [[Perfect digit-to-digit invariant|Münchhausen number]] in base 10 (excluding 0 and 1). If one adopts the convention that <math>0^0=0</math>, however, then 438579088 is another Münchhausen number.<ref>{{Cite web|url=http://mathworld.wolfram.com/MuenchhausenNumber.html|title=Münchhausen Number|first=Eric|last=Weisstein|website=mathworld.wolfram.com|language=en|access-date=2017-12-04}}</ref> * <math>\,1!+4!+5!=145</math> and <math>\,4!+0!+5!+8!+5!=40585</math> are the only non-trivial [[factorion]]s in base 10 (excluding 1 and 2).<ref>{{OEIS|A014080}}</ref> * <math>\frac{16}{64}=\frac{1\!\!\!\not6}{\not64}=\frac{1}{4}</math>, <math>\frac{26}{65}=\frac{2\!\!\!\not6}{\not65}=\frac {2}{5}</math>, <math>\frac{19}{95}=\frac{1\!\!\!\not9}{\not95}=\frac{1}{5}</math>, and <math>\frac{49}{98}=\frac{4\!\!\!\not9}{\not98}=\frac{4}{8}</math>. If the end result of these four [[anomalous cancellation]]s<ref>{{Mathworld|title=Anomalous Cancellation|urlname=AnomalousCancellation}}</ref> are multiplied, their product reduces to exactly 1/100. * <math>\,(4+9+1+3)^3=4913</math>, <math>\,(5+8+3+2)^3=5832</math>, and <math>\,(1+9+6+8+3)^3=19683</math>.<ref>{{OEIS|A061209}}</ref> (In a similar vein, <math>\,(3+4)^3=343</math>.)<ref>[http://primes.utm.edu/curios/page.php/343.html Prime Curios!: 343].</ref> * <math>\,-1+2^7=127</math>, making 127 the smallest nice [[Friedman number]]. A similar example is <math>2^5\cdot9^2=2592</math>.<ref name="Friedman">Erich Friedman, [http://www.stetson.edu/~efriedma/mathmagic/0800.html Problem of the Month (August 2000)] {{Webarchive|url=https://web.archive.org/web/20191107050027/https://www2.stetson.edu/~efriedma/mathmagic/0800.html |date=2019-11-07 }}.</ref> * <math>\,1^3+5^3+3^3=153</math>, <math>\,3^3+7^3+0^3=370</math>, <math>\,3^3+7^3+1^3=371</math>, and <math>\,4^3+0^3+7^3=407</math> are all [[narcissistic number]]s.<ref>{{OEIS|A005188}}</ref> * <math>\,588^2+2353^2=5882353 </math>,<ref>{{OEIS|A064942}}</ref> a prime number. The fraction 1/17 also produces 0.05882353 when rounded to 8 digits. * <math>\,2^1+6^2+4^3+6^4+7^5+9^6+8^7=2646798</math>. The largest number with this pattern is <math>\,12157692622039623539=1^1+2^2+1^3+\ldots+9^{20}</math>.<ref>{{OEIS|A032799}}</ref> *<math>13532385396179=13\times53^{2}\times3853\times96179</math>. This number, found in 2017, answers a question by [[John Horton Conway|John Conway]] whether the digits of a composite number could be the same as its prime factorization.<ref>{{cite web|url=https://oeis.org/A248380/a248380.pdf|title=Five $1,000 Problems (Update 2017)|first=John H.|last=Conway|publisher=[[Online Encyclopedia of Integer Sequences]]|access-date=2024-04-15}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)