Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Directional derivatives when restricted to Hermitian matrices === Let <math>X</math> be a <math>n \times n</math> Hermitian matrix with distinct eigenvalues. Let <math>X = E \textrm{diag}(\Lambda) E^*</math> be its eigen-decomposition where <math>E</math> is a unitary matrix whose columns are the eigenvectors of <math>X</math>, <math>E^*</math> is its conjugate transpose, and <math>\Lambda = \left(\lambda_1, \ldots, \lambda_n\right)</math> the vector of corresponding eigenvalues. Then, for any <math>n \times n</math> Hermitian matrix <math>V</math>, the [[directional derivative]] of <math>\exp: X \to e^X</math> at <math>X</math> in the direction <math>V</math> is <ref name="lewis">{{cite journal | first1=Adrian S. | last1=Lewis | first2=Hristo S. | last2=Sendov | title=Twice differentiable spectral functions | journal=SIAM Journal on Matrix Analysis and Applications | volume=23 | issue=2 | pages=368β386 | date=2001 | doi=10.1137/S089547980036838X | url=https://people.orie.cornell.edu/aslewis/publications/01-twice.pdf }} See Theorem 3.3.</ref> <ref name="deledalle">{{cite journal | first1=Charles-Alban | last1=Deledalle | first2=LoΓ―c | last2=Denis | first3=Florence | last3=Tupin | title=Speckle reduction in matrix-log domain for synthetic aperture radar imaging | journal=Journal of Mathematical Imaging and Vision | date=2022 | volume=64 | issue=3 | pages=298β320 | doi=10.1007/s10851-022-01067-1 | doi-access=free | bibcode=2022JMIV...64..298D }} See Propositions 1 and 2. </ref> <math display="block"> D \exp (X) [V] \triangleq \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\displaystyle e^{X + \epsilon V} - e^{X} \right) = E(G \odot \bar{V}) E^* </math> where <math>\bar{V} = E^* V E</math>, the operator <math>\odot</math> denotes the Hadamard product, and, for all <math>1 \leq i, j \leq n</math>, the matrix <math>G</math> is defined as <math display="block"> G_{i, j} = \left\{\begin{align} & \frac{e^{\lambda_i} - e^{\lambda_j}}{\lambda_i - \lambda_j} & \text{ if } i \neq j,\\ & e^{\lambda_i} & \text{ otherwise}.\\ \end{align}\right. </math> In addition, for any <math>n \times n</math> Hermitian matrix <math>U</math>, the second directional derivative in directions <math>U</math> and <math>V</math> is<ref name="deledalle"/> <math display="block"> D^2 \exp (X) [U, V] \triangleq \lim_{\epsilon_u \to 0} \lim_{\epsilon_v \to 0} \frac{1}{4 \epsilon_u \epsilon_v} \left(\displaystyle e^{X + \epsilon_u U + \epsilon_v V} - e^{X - \epsilon_u U + \epsilon_v V} - e^{X + \epsilon_u U - \epsilon_v V} + e^{X - \epsilon_u U - \epsilon_v V} \right) = E F(U, V) E^* </math> where the matrix-valued function <math>F</math> is defined, for all <math>1 \leq i, j \leq n</math>, as <math display="block"> F(U, V)_{i,j} = \sum_{k=1}^n \phi_{i,j,k}(\bar{U}_{ik}\bar{V}_{jk}^* + \bar{V}_{ik}\bar{U}_{jk}^*) </math> with <math display="block"> \phi_{i,j,k} = \left\{\begin{align} & \frac{G_{ik} - G_{jk}}{\lambda_i - \lambda_j} & \text{ if } i \ne j,\\ & \frac{G_{ii} - G_{ik}}{\lambda_i - \lambda_k} & \text{ if } i = j \text{ and } k \ne i,\\ & \frac{G_{ii}}{2} & \text{ if } i = j = k.\\ \end{align}\right. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)