Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix norm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=="Entry-wise" matrix norms== These norms treat an <math> m \times n </math> matrix as a vector of size <math> m \cdot n </math>, and use one of the familiar vector norms. For example, using the ''p''-norm for vectors, {{nowrap|''p'' ≥ 1}}, we get: :<math>\| A \|_{p,p} = \| \mathrm{vec}(A) \|_p = \left( \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p \right)^{1/p}</math> This is a different norm from the induced ''p''-norm (see above) and the Schatten ''p''-norm (see below), but the notation is the same. The special case ''p'' = 2 is the Frobenius norm, and ''p'' = ∞ yields the maximum norm. ==={{math|''L''<sub>2,1</sub>}} and {{math|''L<sub>p,q</sub>''}} norms=== Let <math>(a_1, \ldots, a_n) </math> be the dimension {{mvar|m}} columns of matrix <math>A</math>. From the original definition, the matrix <math> A </math> presents {{mvar|n}} data points in an {{mvar|m}}-dimensional space. The <math>L_{2,1}</math> norm<ref>{{cite conference | last1=Ding | first1=Chris | last2=Zhou | first2=Ding | last3=He | first3=Xiaofeng | last4=Zha | first4=Hongyuan |date = June 2006 | title = R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization | conference = 23rd International Conference on Machine Learning | series=ICML '06 | isbn = 1-59593-383-2 | place = Pittsburgh, PA | pages=281–288 | doi=10.1145/1143844.1143880 | publisher=[[Association for Computing Machinery]] }}</ref> is the sum of the Euclidean norms of the columns of the matrix: :<math>\| A \|_{2,1} = \sum_{j=1}^n \| a_{j} \|_2 = \sum_{j=1}^n \left( \sum_{i=1}^m |a_{ij}|^2 \right)^{1/2}</math> The <math>L_{2,1}</math> norm as an error function is more robust, since the error for each data point (a column) is not squared. It is used in [[robust data analysis]] and [[sparse coding]]. For {{nowrap|''p'', ''q'' ≥ 1}}, the <math>L_{2,1}</math> norm can be generalized to the <math>L_{p,q}</math> norm as follows: :<math>\| A \|_{p,q} = \left(\sum_{j=1}^n \left( \sum_{i=1}^m |a_{ij}|^p \right)^{\frac{q}{p}}\right)^{\frac{1}{q}}.</math> ===Frobenius norm=== {{Main|Hilbert–Schmidt operator}} {{See also|Frobenius inner product}} When {{nowrap|1=''p'' = ''q'' = 2}} for the <math>L_{p,q}</math> norm, it is called the '''Frobenius norm''' or the '''Hilbert–Schmidt norm''', though the latter term is used more frequently in the context of operators on (possibly infinite-dimensional) [[Hilbert space]]. This norm can be defined in various ways: :<math>\|A\|_\text{F} = \sqrt{\sum_{i}^m\sum_{j}^n |a_{ij}|^2} = \sqrt{\operatorname{trace}\left(A^* A\right)} = \sqrt{\sum_{i=1}^{\min\{m, n\}} \sigma_i^2(A)},</math> where the [[trace (matrix)|trace]] is the sum of diagonal entries, and <math>\sigma_i(A)</math> are the [[singular value]]s of <math>A</math>. The second equality is proven by explicit computation of <math>\mathrm{trace}(A^*A)</math>. The third equality is proven by [[singular value decomposition]] of <math>A</math>, and the fact that the trace is invariant under circular shifts. The Frobenius norm is an extension of the Euclidean norm to <math>K^{n \times n}</math> and comes from the [[Frobenius inner product]] on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for [[numerical linear algebra]]. The sub-multiplicativity of Frobenius norm can be proved using the [[Cauchy–Schwarz inequality]]. In fact, it is more than sub-multiplicative, as <math display="block">\|AB\|_F \leq\|A\|_{op}\|B\|_F</math>where the operator norm <math>\|\cdot\|_{op} \leq \|\cdot\|_{F}</math>. Frobenius norm is often easier to compute than induced norms, and has the useful property of being invariant under [[rotation matrix|rotations]] (and [[Unitary operator|unitary]] operations in general). That is, <math>\|A\|_\text{F} = \|AU\|_\text{F} = \|UA\|_\text{F}</math> for any unitary matrix <math>U</math>. This property follows from the cyclic nature of the trace (<math>\operatorname{trace}(XYZ) =\operatorname{trace}(YZX) = \operatorname{trace}(ZXY)</math>): :<math>\|AU\|_\text{F}^2 = \operatorname{trace}\left( (AU)^{*}A U \right) = \operatorname{trace}\left( U^{*} A^{*}A U \right) = \operatorname{trace}\left( UU^{*} A^{*}A \right) = \operatorname{trace}\left( A^{*} A \right) = \|A\|_\text{F}^2,</math> and analogously: :<math>\|UA\|_\text{F}^2 = \operatorname{trace}\left( (UA)^{*}UA \right) = \operatorname{trace}\left( A^{*} U^{*} UA \right) = \operatorname{trace}\left( A^{*}A \right) = \|A\|_\text{F}^2,</math> where we have used the unitary nature of <math>U</math> (that is, <math>U^* U = U U^* = \mathbf{I}</math>). It also satisfies :<math>\|A^* A\|_\text{F} = \|AA^*\|_\text{F} \leq \|A\|_\text{F}^2</math> and :<math>\|A + B\|_\text{F}^2 = \|A\|_\text{F}^2 + \|B\|_\text{F}^2 + 2 \operatorname{Re} \left( \langle A, B \rangle_\text{F} \right),</math> where <math>\langle A, B \rangle_\text{F}</math> is the [[Frobenius inner product]], and Re is the real part of a complex number (irrelevant for real matrices) ===Max norm=== The '''max norm''' is the elementwise norm in the limit as {{nowrap|1=''p'' = ''q''}} goes to infinity: :<math> \|A\|_{\max} = \max_{i, j} |a_{ij}|. </math> This norm is not [[#Definition|sub-multiplicative]]; but modifying the right-hand side to <math>\sqrt{m n} \max_{i, j} \vert a_{i j} \vert</math> makes it so. Note that in some literature (such as [[Communication complexity]]), an alternative definition of max-norm, also called the <math>\gamma_2</math>-norm, refers to the factorization norm: :<math> \gamma_2(A) = \min_{U,V: A = UV^T} \| U \|_{2,\infty} \| V \|_{2,\infty} = \min_{U,V: A = UV^T} \max_{i,j} \| U_{i,:} \|_2 \| V_{j,:} \|_2 </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)