Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maximum likelihood estimation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation to minimizing Kullback–Leibler divergence and cross entropy === Finding <math>\hat \theta</math> that maximizes the likelihood is asymptotically equivalent to finding the <math>\hat \theta</math> that defines a probability distribution (<math>Q_{\hat \theta}</math>) that has a minimal distance, in terms of [[Kullback–Leibler divergence]], to the real probability distribution from which our data were generated (i.e., generated by <math>P_{\theta_0}</math>).<ref>cmplx96 (https://stats.stackexchange.com/users/177679/cmplx96), Kullback–Leibler divergence, URL (version: 2017-11-18): https://stats.stackexchange.com/q/314472 (at the youtube video, look at minutes 13 to 25)</ref> In an ideal world, P and Q are the same (and the only thing unknown is <math>\theta</math> that defines P), but even if they are not and the model we use is misspecified, still the MLE will give us the "closest" distribution (within the restriction of a model Q that depends on <math>\hat \theta</math>) to the real distribution <math>P_{\theta_0}</math>.<ref>[https://web.stanford.edu/class/stats200/Lecture16.pdf Introduction to Statistical Inference | Stanford (Lecture 16 — MLE under model misspecification)]</ref> {| role="presentation" class="wikitable mw-collapsible mw-collapsed" | '''Proof.''' |- | For simplicity of notation, let's assume that P=Q. Let there be ''n'' [[i.i.d]] data samples <math>\mathbf{y} = (y_1, y_2, \ldots, y_n)</math> from some probability <math>y \sim P_{\theta_0}</math>, that we try to estimate by finding <math>\hat \theta</math> that will maximize the likelihood using <math>P_{\theta}</math>, then: <math display="block">\begin{align} \hat \theta &= \underset{\theta}{\operatorname{arg\,max}}\, L_{P_{\theta}}(\mathbf{y}) = \underset{\theta}{\operatorname{arg\,max}}\, P_{\theta} (\mathbf{y}) = \underset{\theta}{\operatorname{arg\,max}}\, P (\mathbf{y} \mid \theta)\\ &= \underset{\theta}{\operatorname{arg\,max}}\, \prod_{i=1}^n P (y_i \mid \theta) = \underset{\theta}{\operatorname{arg\,max}}\, \sum_{i=1}^n \log P (y_i \mid \theta) \\ &= \underset{\theta}{\operatorname{arg\,max}}\, \left( \sum_{i=1}^n \log P (y_i \mid \theta) - \sum_{i=1}^n \log P (y_i \mid \theta_0) \right) = \underset{\theta}{\operatorname{arg\,max}}\, \sum_{i=1}^n \left( \log P (y_i \mid \theta) - \log P (y_i \mid \theta_0) \right) \\ &= \underset{\theta}{\operatorname{arg\,max}}\, \sum_{i=1}^n \log\frac{P (y_i \mid \theta)}{P (y_i \mid \theta_0)} = \underset{\theta}{\operatorname{arg\,min}}\, \sum_{i=1}^n \log \frac{P (y_i \mid \theta_0)}{P (y_i \mid \theta)} = \underset{\theta}{\operatorname{arg\,min}}\, \frac{1}{n} \sum_{i=1}^n \log \frac{P (y_i \mid \theta_0)}{P (y_i \mid \theta)} \\ &= \underset{\theta}{\operatorname{arg\,min}}\, \frac{1}{n} \sum_{i=1}^n h_{\theta}(y_i) \quad \underset{n\to\infty}{\longrightarrow} \quad \underset{\theta}{\operatorname{arg\,min}}\, E [ h_{\theta}(y) ] \\ &=\underset{\theta}{\operatorname{arg\,min}}\, \int P_{\theta_0}(y) h_\theta(y) dy = \underset{\theta}{\operatorname{arg\,min}}\, \int P_{\theta_0}(y) \log \frac{P (y \mid \theta_0)}{P (y \mid \theta)} dy\\ &= \underset{\theta}{\operatorname{arg\,min}}\, D_\text{KL}(P_{\theta_0} \parallel P_{\theta}) \end{align}</math> Where <math>h_{\theta}(x) = \log \frac{P (x \mid \theta_0)}{P (x \mid \theta)}</math>. Using ''h'' helps see how we are using the [[law of large numbers]] to move from the average of ''h''(''x'') to the [[Expected value|expectancy]] of it using the [[law of the unconscious statistician]]. The first several transitions have to do with laws of [[logarithm]] and that finding <math>\hat \theta</math> that maximizes some function will also be the one that maximizes some monotonic transformation of that function (i.e.: adding/multiplying by a constant). Since [[Kullback–Leibler divergence#Cross entropy|cross entropy]] is just [[Entropy (information theory)|Shannon's entropy]] plus KL divergence, and since the entropy of <math>P_{\theta_0}</math> is constant, then the MLE is also asymptotically minimizing cross entropy.<ref>Sycorax says Reinstate Monica (https://stats.stackexchange.com/users/22311/sycorax-says-reinstate-monica), the relationship between maximizing the likelihood and minimizing the cross-entropy, URL (version: 2019-11-06): https://stats.stackexchange.com/q/364237</ref> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)