Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Maxwell–Boltzmann distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In ''n''-dimensional space == In {{mvar|n}}-dimensional space, Maxwell–Boltzmann distribution becomes: <math display="block"> f(\mathbf{v}) ~ d^n\mathbf{v} = \biggl[\frac{m}{2 \pi k_\text{B}T}\biggr]^{n/2} \exp\left(-\frac{m|\mathbf{v}|^2}{2k_\text{B}T}\right) ~d^n\mathbf{v} </math> Speed distribution becomes: <math display="block"> f(v) ~ dv = A \exp\left(-\frac{mv^2}{2k_\text{B} T}\right) v^{n-1} ~ dv </math> where <math> A </math> is a normalizing constant. The following integral result is useful: <math display="block">\begin{align} \int_{0}^{\infty} v^a \exp\left(-\frac{mv^2}{2k_\text{B} T}\right) dv &= \left[\frac{2k_\text{B} T}{m}\right]^\frac{a+1}{2} \int_{0}^{\infty} e^{-x}x^{a/2} \, dx^{1/2} \\[2pt] &= \left[\frac{2k_\text{B} T}{m}\right]^\frac{a+1}{2} \int_{0}^{\infty} e^{-x}x^{a/2}\frac{x^{-1/2}}{2} \, dx \\[2pt] &= \left[\frac{2k_\text{B} T}{m}\right]^\frac{a+1}{2} \frac{\Gamma{\left(\frac{a+1}{2}\right)}}{2} \end{align}</math> where <math> \Gamma(z)</math> is the [[Gamma function]]. This result can be used to calculate the [[Moment (mathematics)|moments]] of speed distribution function: <math display="block"> \langle v \rangle = \frac {\displaystyle \int_{0}^{\infty} v \cdot v^{n-1} \exp\left(-\tfrac{mv^2}{2k_\text{B} T}\right) \, dv} {\displaystyle \int_{0}^{\infty} v^{n-1} \exp\left(-\tfrac{mv^2}{2k_\text{B} T}\right) \, dv} = \sqrt{\frac{2k_\text{B} T}{m}} ~~ \frac{\Gamma{\left(\frac{n+1}{2}\right)}}{\Gamma{\left(\frac{n}{2}\right)}}</math> which is the [[expectation value|mean]] speed itself <math display="inline">v_\mathrm{avg} = \langle v \rangle = \sqrt{\frac{2k_\text{B} T}{m}} \ \frac{\Gamma \left(\frac{n+1}{2}\right)}{\Gamma \left(\frac{n}{2}\right)}.</math> <math display="block"> \begin{align} \langle v^2 \rangle &= \frac {\displaystyle\int_{0}^{\infty} v^2 \cdot v^{n-1} \exp\left(-\tfrac{mv^2}{2k_\text{B} T}\right) \, dv} {\displaystyle\int_{0}^{\infty} v^{n-1} \exp\left(-\tfrac{mv^2}{2k_\text{B}T}\right) \, dv} \\[1ex] &= \left[\frac{2k_\text{B}T}{m}\right] \frac{\Gamma {\left(\frac{n+2}{2}\right)}}{\Gamma {\left(\frac{n}{2}\right)}} \\[1.2ex] &= \left[\frac{2k_\text{B}T}{m}\right] \frac{n}{2} = \frac{n k_\text{B}T}{m} \end{align}</math> which gives root-mean-square speed <math display="inline">v_\text{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{n k_\text{B}T}{m}}.</math> The derivative of speed distribution function: <math display="block">\frac{df(v)}{dv} = A \exp\left(-\frac{mv^2}{2k_\text{B}T}\right) \biggl[-\frac{mv}{k_\text{B}T} v^{n-1}+(n-1)v^{n-2}\biggr] = 0 </math> This yields the most probable speed ([[Mode (statistics)|mode]]) <math display="inline">v_\text{p} = \sqrt{\left(n-1\right) k_\text{B}T/m}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)