Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mayer–Vietoris sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Suspensions=== [[Image:0-Sphere Suspension - Mayer-Vietoris Cover.svg|right|500px|thumb|This decomposition of the suspension ''X'' of the 0-sphere ''Y'' yields all the homology groups of ''X''.]] If ''X'' is the [[Suspension (topology)|suspension]] ''SY'' of a space ''Y'', let ''A'' and ''B'' be the [[Complement (set theory)|complements]] in ''X'' of the top and bottom 'vertices' of the double cone, respectively. Then ''X'' is the union ''A''∪''B'', with ''A'' and ''B'' contractible. Also, the intersection ''A''∩''B'' is homotopy equivalent to ''Y''. Hence the Mayer–Vietoris sequence yields, for all ''n'',<ref>{{harvnb|Hatcher|2002|loc=Exercise 32 on page 158}}</ref> :<math>\tilde{H}_n(SY)\cong \tilde{H}_{n-1}(Y).</math> The illustration on the right shows the 1-sphere ''X'' as the suspension of the 0-sphere ''Y''. Noting in general that the ''k''-sphere is the suspension of the (''k'' − 1)-sphere, it is easy to derive the homology groups of the ''k''-sphere by induction, [[#k-sphere|as above]]. {{-}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)