Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Minimum phase
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Minimum phase as minimum group delay == For all [[causal]] and [[BIBO stability|stable]] systems that have the same [[frequency response|magnitude response]], the minimum phase system has the minimum [[group delay]]. The following proof illustrates this idea of minimum [[group delay]]. Suppose we consider one [[Zero (complex analysis)|zero]] <math>a</math> of the [[transfer function]] <math>H(z)</math>. Let's place this [[Zero (complex analysis)|zero]] <math>a</math> inside the [[unit circle]] (<math>\left| a \right| < 1</math>) and see how the [[group delay]] is affected. <math display="block">a = \left| a \right| e^{i \theta_a} \, \text{ where } \, \theta_a = \operatorname{Arg}(a)</math> Since the [[Zero (complex analysis)|zero]] <math>a</math> contributes the factor <math>1 - a z^{-1}</math> to the [[transfer function]], the phase contributed by this term is the following. <math display="block">\begin{align} \phi_a \left(\omega \right) &= \operatorname{Arg} \left(1 - a e^{-i \omega} \right)\\ &= \operatorname{Arg} \left(1 - \left| a \right| e^{i \theta_a} e^{-i \omega} \right)\\ &= \operatorname{Arg} \left(1 - \left| a \right| e^{-i (\omega - \theta_a)} \right)\\ &= \operatorname{Arg} \left( \left\{ 1 - \left| a \right| \cos( \omega - \theta_a ) \right\} + i \left\{ \left| a \right| \sin( \omega - \theta_a ) \right\}\right)\\ &= \operatorname{Arg} \left( \left\{ \left| a \right|^{-1} - \cos( \omega - \theta_a ) \right\} + i \left\{ \sin( \omega - \theta_a ) \right\} \right) \end{align}</math> <math>\phi_a (\omega)</math> contributes the following to the [[group delay]]. <math display="block">\begin{align} -\frac{d \phi_a (\omega)}{d \omega} &= \frac{ \sin^2( \omega - \theta_a ) + \cos^2( \omega - \theta_a ) - \left| a \right|^{-1} \cos( \omega - \theta_a ) }{ \sin^2( \omega - \theta_a ) + \cos^2( \omega - \theta_a ) + \left| a \right|^{-2} - 2 \left| a \right|^{-1} \cos( \omega - \theta_a ) } \\ &= \frac{ \left| a \right| - \cos( \omega - \theta_a ) }{ \left| a \right| + \left| a \right|^{-1} - 2 \cos( \omega - \theta_a ) } \end{align} </math> The denominator and <math>\theta_a</math> are invariant to reflecting the [[Zero (complex analysis)|zero]] <math>a</math> outside of the [[unit circle]], i.e., replacing <math>a</math> with <math>(a^{-1})^{*}</math>. However, by reflecting <math>a</math> outside of the unit circle, we increase the magnitude of <math>\left| a \right|</math> in the numerator. Thus, having <math>a</math> inside the [[unit circle]] minimizes the [[group delay]] contributed by the factor <math>1 - a z^{-1}</math>. We can extend this result to the general case of more than one [[Zero (complex analysis)|zero]] since the phase of the multiplicative factors of the form <math>1 - a_i z^{-1}</math> is additive. I.e., for a [[transfer function]] with <math>N</math> [[Zero (complex analysis)|zero]]s, <math display="block">\operatorname{Arg}\left( \prod_{i = 1}^N \left( 1 - a_i z^{-1} \right) \right) = \sum_{i = 1}^N \operatorname{Arg}\left( 1 - a_i z^{-1} \right) </math> So, a minimum phase system with all [[Zero (complex analysis)|zero]]s inside the [[unit circle]] minimizes the [[group delay]] since the [[group delay]] of each individual [[Zero (complex analysis)|zero]] is minimized. [[File:Minimum and maximum phase responses.gif|frame|center|Illustration of the calculus above. Top and bottom are filters with same gain response (on the left : the [[Nyquist diagram]]s, on the right : phase responses), but the filter on the top with <math>a = 0.8 < 1</math> has the smallest amplitude in phase response.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)