Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mixture model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Handwriting recognition=== The following example is based on an example in [[Christopher M. Bishop]], ''Pattern Recognition and Machine Learning''.<ref>{{cite book | last = Bishop | first = Christopher | title = Pattern recognition and machine learning | publisher = Springer | location = New York | year = 2006 | isbn = 978-0-387-31073-2 }}</ref> Imagine that we are given an ''N''Γ''N'' black-and-white image that is known to be a scan of a hand-written digit between 0 and 9, but we don't know which digit is written. We can create a mixture model with <math>K=10</math> different components, where each component is a vector of size <math>N^2</math> of [[Bernoulli distribution]]s (one per pixel). Such a model can be trained with the [[expectation-maximization algorithm]] on an unlabeled set of hand-written digits, and will effectively cluster the images according to the digit being written. The same model could then be used to recognize the digit of another image simply by holding the parameters constant, computing the probability of the new image for each possible digit (a trivial calculation), and returning the digit that generated the highest probability.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)