Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multimodal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==General properties== A mixture of two unimodal distributions with differing means is not necessarily bimodal. The combined distribution of heights of men and women is sometimes used as an example of a bimodal distribution, but in fact the difference in mean heights of men and women is too small relative to their [[standard deviation]]s to produce bimodality when the two distribution curves are combined.<ref name="Schilling2002">{{Cite journal|title=Is Human Height Bimodal?|first1=Mark F. |last1=Schilling |first2= Ann E.| last2=Watkins | author2-link = Ann E. Watkins |first3=William |last3=Watkins| journal=[[The American Statistician]]| doi=10.1198/00031300265 |volume=56 |year=2002| pages=223β229 |issue=3|s2cid=53495657 }}</ref> Bimodal distributions have the peculiar property that β unlike the unimodal distributions β the mean may be a more robust sample estimator than the median.<ref name=Mosteller1977>{{cite book |last1=Mosteller |first1=F. |last2=Tukey |first2=J. W. |year=1977 |title=Data Analysis and Regression: A Second Course in Statistics |location=Reading, Mass |publisher=Addison-Wesley |isbn=0-201-04854-X }}</ref> This is clearly the case when the distribution is U-shaped like the arcsine distribution. It may not be true when the distribution has one or more long tails. ===Moments of mixtures=== Let <math display="block"> f( x ) = p g_1( x ) + ( 1 - p ) g_2( x ) \, </math> where {{math|''g''<sub>''i''</sub>}} is a probability distribution and {{math|''p''}} is the mixing parameter. The moments of {{math|''f''(''x'')}} are<ref name=Kim2003>{{cite web |last1=Kim |first1=T.-H. |last2=White |first2=H. |author-link2=Halbert White |year=2003 |url=https://escholarship.org/uc/item/7b52v07p |title=On more robust estimation of skewness and kurtosis: Simulation and application to the S & P 500 index }}</ref> <math display="block">\begin{align} \mu &= p \mu_1 + ( 1 - p ) \mu_2 \\[1ex] \nu_2 &= p \left[ \sigma_1^2 + \delta_1^2 \right] + ( 1 - p ) \left[ \sigma_2^2 + \delta_2^2 \right] \\[1ex] \nu_3 &= p \left[ S_1 \sigma_1^3 + 3 \delta_1 \sigma_1^2 + \delta_1^3 \right] + ( 1 - p ) \left[ S_2 \sigma_2^3 + 3 \delta_2 \sigma_2^2 + \delta_2^3 \right] \\[1ex] \nu_4 &= p \left[ K_1 \sigma_1^4 + 4 S_1 \delta_1 \sigma_1^3 + 6 \delta_1^2 \sigma_1^2 + \delta_1^4 \right] + ( 1 - p ) \left[ K_2 \sigma_2^4 + 4 S_2 \delta_2 \sigma_2^3 + 6 \delta_2^2 \sigma_2^2 + \delta_2^4 \right] \\ \end{align}</math> where * <math> \mu = \int x f( x ) \, dx </math> * <math> \delta_i = \mu_i - \mu </math> * <math> \nu_r = \int ( x - \mu )^r f( x ) \, dx </math> and {{math|''S''<sub>''i''</sub>}} and {{math|''K''<sub>''i''</sub>}} are the [[skewness]] and [[kurtosis]] of the {{mvar|i}}-th distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)