Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Network theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Recurrence networks=== The recurrence matrix of a [[recurrence plot]] can be considered as the adjacency matrix of an undirected and unweighted network. This allows for the analysis of time series by network measures. Applications range from detection of regime changes over characterizing dynamics to synchronization analysis.<ref name="marwan2009">{{cite journal| vauthors = Marwan N, Donges JF, Zou Y, Donner RV, Kurths J |title=Complex network approach for recurrence analysis of time series|journal=Physics Letters A|volume=373|issue=46|year=2009|pages=4246β4254|issn=0375-9601|doi=10.1016/j.physleta.2009.09.042|arxiv=0907.3368|bibcode=2009PhLA..373.4246M|s2cid=7761398}}</ref><ref name="donner2011">{{cite journal| vauthors = Donner RV, Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J |title=The Geometry of Chaotic Dynamics β A Complex Network Perspective|journal=European Physical Journal B|volume=84|issue=4|year=2011|pages=653β672|issn=1434-6036|doi=10.1140/epjb/e2011-10899-1|arxiv=1102.1853|bibcode=2011EPJB...84..653D|s2cid=18979395}}</ref><ref name="feldhoff2013">{{cite journal| vauthors = Feldhoff JH, Donner RV, Donges JF, Marwan N, Kurths J |title=Geometric signature of complex synchronisation scenarios|journal=Europhysics Letters |volume=102 |issue=3 |year=2013|pages=30007|issn=1286-4854|doi=10.1209/0295-5075/102/30007|arxiv=1301.0806|bibcode=2013EL....10230007F|s2cid=119118006}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)