Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neuron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Action on other neurons==== A neuron affects other neurons by releasing a neurotransmitter that binds to [[receptor (biochemistry)|chemical receptor]]s. The effect on the postsynaptic neuron is determined by the type of receptor that is activated, not by the presynaptic neuron or by the neurotransmitter. Receptors are classified broadly as ''excitatory'' (causing an increase in firing rate), ''inhibitory'' (causing a decrease in firing rate), or ''modulatory'' (causing long-lasting effects not directly related to firing rate).{{citation needed|date=July 2022}} The two most common (90%+) neurotransmitters in the brain, [[glutamate]] and [[GABA]], have largely consistent actions. Glutamate acts on several types of receptors and has effects that are excitatory at [[ionotropic receptor]]s and a modulatory effect at [[metabotropic receptor]]s. Similarly, GABA acts on several types of receptors, but all of them have inhibitory effects (in adult animals, at least). Because of this consistency, it is common for neuroscientists to refer to cells that release glutamate as "excitatory neurons", and cells that release GABA as "inhibitory neurons". Some other types of neurons have consistent effects, for example, "excitatory" motor neurons in the spinal cord that release [[acetylcholine]], and "inhibitory" [[spinal neuron]]s that release [[glycine]].{{citation needed|date=July 2022}} The distinction between excitatory and inhibitory neurotransmitters is not absolute. Rather, it depends on the class of chemical receptors present on the postsynaptic neuron. In principle, a single neuron, releasing a single neurotransmitter, can have excitatory effects on some targets, inhibitory effects on others, and modulatory effects on others still. For example, [[photoreceptor cell]]s in the retina constantly release the neurotransmitter glutamate in the absence of light. So-called OFF [[retinal bipolar cells|bipolar cells]] are, like most neurons, excited by the released glutamate. However, neighboring target neurons called ON bipolar cells are instead inhibited by glutamate, because they lack typical [[ionotropic receptor|ionotropic]] [[glutamate receptors]] and instead express a class of inhibitory [[metabotropic receptor|metabotropic]] glutamate receptors.<ref>{{cite journal | vauthors = Gerber U | title = Metabotropic glutamate receptors in vertebrate retina | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 106 | issue = 1 | pages = 83β7 | date = January 2003 | pmid = 12675489 | doi = 10.1023/A:1022477203420 | s2cid = 22296630 }}</ref> When light is present, the photoreceptors cease releasing glutamate, which relieves the ON bipolar cells from inhibition, activating them; this simultaneously removes the excitation from the OFF bipolar cells, silencing them.{{citation needed|date=July 2022}} It is possible to identify the type of inhibitory effect a presynaptic neuron will have on a postsynaptic neuron, based on the proteins the presynaptic neuron expresses. [[Parvalbumin]]-expressing neurons typically dampen the output signal of the postsynaptic neuron in the [[visual cortex]], whereas [[somatostatin]]-expressing neurons typically block dendritic inputs to the postsynaptic neuron.<ref name="pmid22878717">{{cite journal | vauthors = Wilson NR, Runyan CA, Wang FL, Sur M | title = Division and subtraction by distinct cortical inhibitory networks in vivo | journal = Nature | volume = 488 | issue = 7411 | pages = 343β8 | date = August 2012 | pmid = 22878717 | pmc = 3653570 | doi = 10.1038/nature11347 | bibcode = 2012Natur.488..343W | hdl = 1721.1/92709 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)