Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Quantile function ==== {{Further|Quantile function#Normal distribution}} The [[quantile function]] of a distribution is the inverse of the cumulative distribution function. The quantile function of the standard normal distribution is called the [[probit function]], and can be expressed in terms of the inverse [[error function]]: <math display=block> \Phi^{-1}(p) = \sqrt2\operatorname{erf}^{-1}(2p - 1), \quad p\in(0,1). </math> For a normal random variable with mean {{tmath|\mu}} and variance <math display=inline>\sigma^2</math>, the quantile function is <math display=block> F^{-1}(p) = \mu + \sigma\Phi^{-1}(p) = \mu + \sigma\sqrt 2 \operatorname{erf}^{-1}(2p - 1), \quad p\in(0,1). </math> The [[quantile]] <math display=inline>\Phi^{-1}(p)</math> of the standard normal distribution is commonly denoted as {{tmath|z_p}}. These values are used in [[hypothesis testing]], construction of [[confidence interval]]s and [[QβQ plot]]s. A normal random variable {{tmath|X}} will exceed <math display=inline>\mu + z_p\sigma</math> with probability <math display=inline>1-p</math>, and will lie outside the interval <math display=inline>\mu \pm z_p\sigma</math> with probability {{tmath|2(1-p)}}. In particular, the quantile <math display=inline>z_{0.975}</math> is [[1.96]]; therefore a normal random variable will lie outside the interval <math display=inline>\mu \pm 1.96\sigma</math> in only 5% of cases. The following table gives the quantile <math display=inline>z_p</math> such that {{tmath|X}} will lie in the range <math display=inline>\mu \pm z_p\sigma</math> with a specified probability {{tmath|p}}. These values are useful to determine [[tolerance interval]] for [[Sample mean and sample covariance#Sample mean|sample averages]] and other statistical [[estimator]]s with normal (or [[asymptotic]]ally normal) distributions.<ref>{{Cite book |last=Vaart |first=A. W. van der |url=http://dx.doi.org/10.1017/cbo9780511802256 |title=Asymptotic Statistics |date=1998-10-13 |publisher=Cambridge University Press |doi=10.1017/cbo9780511802256 |isbn=978-0-511-80225-6}}</ref> The following table shows <math display=inline>\sqrt 2 \operatorname{erf}^{-1}(p)=\Phi^{-1}\left(\frac{p+1}{2}\right)</math>, not <math display=inline>\Phi^{-1}(p)</math> as defined above. {| class="wikitable" style="text-align:left;margin-left:24pt;border:none;" ! {{tmath|p}} !! <math display=inline>z_p</math> | rowspan="8" style="border:none;"| ! {{tmath|p}} !! <math display=inline>z_p</math> |- | 0.80 || {{val|1.281551565545}} || 0.999 || {{val|3.290526731492}} |- | 0.90 || {{val|1.644853626951}} || 0.9999 || {{val|3.890591886413}} |- | 0.95 || {{val|1.959963984540}} || 0.99999 || {{val|4.417173413469}} |- | 0.98 || {{val|2.326347874041}} || 0.999999 || {{val|4.891638475699}} |- | 0.99 || {{val|2.575829303549}} || 0.9999999 || {{val|5.326723886384}} |- | 0.995 || {{val|2.807033768344}} || 0.99999999 || {{val|5.730728868236}} |- | 0.998 || {{val|3.090232306168}} || 0.999999999 || {{val|6.109410204869}} |} For small {{tmath|p}}, the quantile function has the useful [[asymptotic expansion]] <math display=inline>\Phi^{-1}(p)=-\sqrt{\ln\frac{1}{p^2}-\ln\ln\frac{1}{p^2}-\ln(2\pi)}+\mathcal{o}(1).</math>{{citation needed|date=February 2023}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)