Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Observability
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Nonlinear systems == Given the system <math>\dot{x} = f(x) + \sum_{j=1}^mg_j(x)u_j </math>, <math>y_i = h_i(x), i \in p</math>. Where <math>x \in \mathbb{R}^n</math> the state vector, <math>u \in \mathbb{R}^m</math> the input vector and <math>y \in \mathbb{R}^p</math> the output vector. <math>f,g,h</math> are to be smooth vector fields. Define the observation space <math>\mathcal{O}_s</math> to be the space containing all repeated [[Lie derivative]]s, then the system is observable in <math>x_0</math> if and only if <math>\dim(d\mathcal{O}_s(x_0)) = n</math>, where :<math>d\mathcal{O}_s(x_0) = \operatorname{span}(dh_1(x_0), \ldots , dh_p(x_0), dL_{v_i}L_{v_{i-1}}, \ldots , L_{v_1}h_j(x_0)),\ j\in p, k=1,2,\ldots.</math><ref>Lecture notes for Nonlinear Systems Theory by prof. dr. D.Jeltsema, [[Jacquelien Scherpen|prof dr. J.M.A.Scherpen]] and prof dr. A.J.van der Schaft.</ref> Early criteria for observability in nonlinear dynamic systems were discovered by Griffith and Kumar,<ref>{{cite journal|doi=10.1016/0022-247X(71)90241-1|title=On the observability of nonlinear systems: I |year=1971 |last1=Griffith |first1=E. W. |last2=Kumar |first2=K. S. P. |journal=Journal of Mathematical Analysis and Applications |volume=35 |pages=135β147 |doi-access= }}</ref> Kou, Elliot and Tarn,<ref>{{cite journal|doi=10.1016/S0019-9958(73)90508-1|title=Observability of nonlinear systems |year=1973 |last1=Kou |first1=Shauying R. |last2=Elliott |first2=David L. |last3=Tarn |first3=Tzyh Jong |journal=Information and Control |volume=22 |pages=89β99 |doi-access=free }}</ref> and Singh.<ref>{{cite journal|doi=10.1080/00207727508941856|title=Observability in non-linear systems with immeasurable inputs |year=1975 |last1=Singh |first1=Sahjendra N. |journal=International Journal of Systems Science |volume=6 |issue=8 |pages=723β732 }}</ref> There also exist an observability criteria for nonlinear time-varying systems.<ref>{{Cite journal |last=Martinelli |first=Agostino |date=2022 |title=Extension of the Observability Rank Condition to Time-Varying Nonlinear Systems |url=https://ieeexplore.ieee.org/document/9790057 |journal=IEEE Transactions on Automatic Control |volume=67 |issue=9 |pages=5002β5008 |doi=10.1109/TAC.2022.3180771 |s2cid=251957578 |issn=0018-9286}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)