Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Open set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations of open sets == {{See also|Almost open map|Glossary of topology}} Throughout, <math>(X, \tau)</math> will be a topological space. A subset <math>A \subseteq X</math> of a topological space <math>X</math> is called: <ul> <li>'''{{em|α-open}}''' if <math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X \left( \operatorname{int}_X A \right) \right)</math>, and the complement of such a set is called '''{{em|α-closed}}'''.{{sfn|Hart|2004|p=9}}</li> <li>'''{{em|preopen}}''', '''{{em|nearly open}}''', or '''{{em|locally [[Dense subset|dense]]}}''' if it satisfies any of the following equivalent conditions: <ol> <li><math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X A \right).</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists subsets <math>D, U \subseteq X</math> such that <math>U</math> is open in <math>X,</math> <math>D</math> is a [[dense subset]] of <math>X,</math> and <math>A = U \cap D.</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists an open (in <math>X</math>) subset <math>U \subseteq X</math> such that <math>A</math> is a dense subset of <math>U.</math>{{sfn|Hart|2004|pp=8–9}}</li> </ol> The complement of a preopen set is called '''{{em|preclosed}}'''. </li> <li>'''{{em|b-open}}''' if <math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X A \right) ~\cup~ \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math>. The complement of a b-open set is called '''{{em|b-closed}}'''.{{sfn|Hart|2004|p=9}}</li> <li>'''{{em|β-open}}''' or '''{{em|semi-preopen}}''' if it satisfies any of the following equivalent conditions: <ol> <li><math>A ~\subseteq~ \operatorname{cl}_X \left( \operatorname{int}_X \left( \operatorname{cl}_X A \right) \right)</math>{{sfn|Hart|2004|p=9}}</li> <li><math> \operatorname{cl}_X A</math> is a regular closed subset of <math>X.</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists a preopen subset <math>U</math> of <math>X</math> such that <math>U \subseteq A \subseteq \operatorname{cl}_X U.</math>{{sfn|Hart|2004|pp=8–9}}</li> </ol> The complement of a β-open set is called '''{{em|β-closed}}'''. </li> <li>'''{{em|[[sequentially open]]}}''' if it satisfies any of the following equivalent conditions: <ol> <li>Whenever a sequence in <math>X</math> converges to some point of <math>A,</math> then that sequence is eventually in <math>A.</math> Explicitly, this means that if <math>x_{\bull} = \left( x_i \right)_{i=1}^{\infty}</math> is a sequence in <math>X</math> and if there exists some <math>a \in A</math> is such that <math>x_{\bull} \to x</math> in <math>(X, \tau),</math> then <math>x_{\bull}</math> is eventually in <math>A</math> (that is, there exists some integer <math>i</math> such that if <math>j \geq i,</math> then <math>x_j \in A</math>).</li> <li><math>A</math> is equal to its '''{{em|sequential interior}}''' in <math>X,</math> which by definition is the set :<math>\begin{alignat}{4} \operatorname{SeqInt}_X A :&= \{ a \in A ~:~ \text{ whenever a sequence in } X \text{ converges to } a \text{ in } (X, \tau), \text{ then that sequence is eventually in } A \} \\ &= \{ a \in A ~:~ \text{ there does NOT exist a sequence in } X \setminus A \text{ that converges in } (X, \tau) \text{ to a point in } A \} \\ \end{alignat} </math> </li> </ol> The complement of a sequentially open set is called '''{{em|sequentially closed}}'''. A subset <math>S \subseteq X</math> is sequentially closed in <math>X</math> if and only if <math>S</math> is equal to its '''{{em|sequential closure}}''', which by definition is the set <math>\operatorname{SeqCl}_X S</math> consisting of all <math>x \in X</math> for which there exists a sequence in <math>S</math> that converges to <math>x</math> (in <math>X</math>). </li> <li>'''{{em|[[Almost open set|almost open]]}}''' and is said to have '''{{em|the Baire property}}''' if there exists an open subset <math>U \subseteq X</math> such that <math>A \bigtriangleup U</math> is a [[Meager set|meager subset]], where <math>\bigtriangleup</math> denotes the [[symmetric difference]].<ref name="oxtoby">{{citation|title=Measure and Category|volume=2|series=Graduate Texts in Mathematics|first=John C.|last=Oxtoby|edition=2nd|publisher=Springer-Verlag|year=1980|isbn=978-0-387-90508-2|contribution=4. The Property of Baire|pages=19–21|url=https://books.google.com/books?id=wUDjoT5xIFAC&pg=PA19}}.</ref> * The subset <math>A \subseteq X</math> is said to have '''the Baire property in the restricted sense''' if for every subset <math>E</math> of <math>X</math> the intersection <math>A\cap E</math> has the Baire property relative to <math>E</math>.<ref>{{citation|last=Kuratowski|first=Kazimierz|authorlink=Kazimierz Kuratowski|title= Topology. Vol. 1|publisher=Academic Press and Polish Scientific Publishers|year=1966}}.</ref></li> <li>'''{{em|semi-open}}''' if <math>A ~\subseteq~ \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math> or, equivalently, <math>\operatorname{cl}_X A = \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math>. The complement in <math>X</math> of a semi-open set is called a '''{{em|semi-closed}} set'''.{{sfn|Hart|2004|p=8}} * The '''{{em|semi-closure}}''' (in <math>X</math>) of a subset <math>A \subseteq X,</math> denoted by <math>\operatorname{sCl}_X A,</math> is the intersection of all semi-closed subsets of <math>X</math> that contain <math>A</math> as a subset.{{sfn|Hart|2004|p=8}}</li> <li>'''{{em|semi-θ-open}}''' if for each <math>x \in A</math> there exists some semiopen subset <math>U</math> of <math>X</math> such that <math>x \in U \subseteq \operatorname{sCl}_X U \subseteq A.</math>{{sfn|Hart|2004|p=8}}</li> <li>'''{{em|θ-open}}''' (resp. '''{{em|δ-open}}''') if its complement in <math>X</math> is a θ-closed (resp. {{em|δ-closed}}) set, where by definition, a subset of <math>X</math> is called '''{{em|θ-closed}}''' (resp. '''{{em|δ-closed}}''') if it is equal to the set of all of its θ-cluster points (resp. δ-cluster points). A point <math>x \in X</math> is called a '''{{em|θ-cluster point}}''' (resp. a '''{{em|δ-cluster point}}''') of a subset <math>B \subseteq X</math> if for every open neighborhood <math>U</math> of <math>x</math> in <math>X,</math> the intersection <math>B \cap \operatorname{cl}_X U</math> is not empty (resp. <math>B \cap \operatorname{int}_X\left( \operatorname{cl}_X U \right)</math> is not empty).{{sfn|Hart|2004|p=8}}</li> </ul> Using the fact that :<math>A ~\subseteq~ \operatorname{cl}_X A ~\subseteq~ \operatorname{cl}_X B</math> {{spaces|4}}and{{spaces|4}} <math>\operatorname{int}_X A ~\subseteq~ \operatorname{int}_X B ~\subseteq~ B</math> whenever two subsets <math>A, B \subseteq X</math> satisfy <math>A \subseteq B,</math> the following may be deduced: * Every α-open subset is semi-open, semi-preopen, preopen, and b-open. * Every b-open set is semi-preopen (i.e. β-open). * Every preopen set is b-open and semi-preopen. * Every semi-open set is b-open and semi-preopen. Moreover, a subset is a regular open set if and only if it is preopen and semi-closed.{{sfn|Hart|2004|pp=8–9}} The intersection of an α-open set and a semi-preopen (resp. semi-open, preopen, b-open) set is a semi-preopen (resp. semi-open, preopen, b-open) set.{{sfn|Hart|2004|pp=8–9}} Preopen sets need not be semi-open and semi-open sets need not be preopen.{{sfn|Hart|2004|pp=8–9}} Arbitrary unions of preopen (resp. α-open, b-open, semi-preopen) sets are once again preopen (resp. α-open, b-open, semi-preopen).{{sfn|Hart|2004|pp=8-9}} However, finite intersections of preopen sets need not be preopen.{{sfn|Hart|2004|p=8}} The set of all α-open subsets of a space <math>(X, \tau)</math> forms a topology on <math>X</math> that is [[Comparison of topologies|finer]] than <math>\tau.</math>{{sfn|Hart|2004|p=9}} A topological space <math>X</math> is [[Hausdorff space|Hausdorff]] if and only if every [[Compact space|compact subspace]] of <math>X</math> is θ-closed.{{sfn|Hart|2004|p=8}} A space <math>X</math> is [[totally disconnected]] if and only if every regular closed subset is preopen or equivalently, if every semi-open subset is preopen. Moreover, the space is totally disconnected if and only if the '''{{em|[[Closure (topology)|closure]]}}''' of every preopen subset is open.{{sfn|Hart|2004|p=9}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)