Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Phase-change memory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In-memory computing=== More recently, there is significant interest in the application of PCM for in-memory computing.<ref>{{Cite journal|last1=Burr|first1=Geoffrey W.|last2=Shelby|first2=Robert M.|last3=Sidler|first3=Severin|last4=di Nolfo|first4=Carmelo|last5=Jang|first5=Junwoo|last6=Boybat|first6=Irem|last7=Shenoy|first7=Rohit S.|last8=Narayanan|first8=Pritish|last9=Virwani|first9=Kumar|last10=Giacometti|first10=Emanuele U.|last11=Kurdi|first11=Bulent N.|date=November 2015|title=Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element|url=https://ieeexplore.ieee.org/document/7151827|journal=IEEE Transactions on Electron Devices|volume=62|issue=11|pages=3498–3507|doi=10.1109/TED.2015.2439635|bibcode=2015ITED...62.3498B |s2cid=5243635 |issn=0018-9383|url-access=subscription}}</ref> The essential idea is to perform computational tasks such as [[Matrix multiplication algorithm|matrix-vector-multiply operations]] in the memory array itself by exploiting PCM's analog storage capability and [[Kirchhoff's circuit laws]]. PCM-based in-memory computing could be interesting for applications such as [[deep learning]] [[Statistical inference|inference]] which do not require very high computing precision.<ref>{{Cite journal|last1=Sebastian|first1=Abu|last2=Le Gallo|first2=Manuel|last3=Khaddam-Aljameh|first3=Riduan|last4=Eleftheriou|first4=Evangelos|date=July 2020|title=Memory devices and applications for in-memory computing|url=https://www.nature.com/articles/s41565-020-0655-z|journal=Nature Nanotechnology|language=en|volume=15|issue=7|pages=529–544|doi=10.1038/s41565-020-0655-z|pmid=32231270 |bibcode=2020NatNa..15..529S |s2cid=214704544 |issn=1748-3395|url-access=subscription}}</ref> In 2021, IBM published a full-fledged in-memory computing core based on multi-level PCM integrated in 14 nm [[CMOS]] technology node.<ref>{{Cite journal|last1=Khaddam-Aljameh|first1=Riduan|last2=Stanisavljevic|first2=Milos|last3=Mas|first3=Jordi Fornt|last4=Karunaratne|first4=Geethan|last5=Brändli|first5=Matthias|last6=Liu|first6=Feng|last7=Singh|first7=Abhairaj|last8=Müller|first8=Silvia M.|last9=Egger|first9=Urs|last10=Petropoulos|first10=Anastasios|last11=Antonakopoulos|first11=Theodore|date=2022|title=HERMES-Core–A 1.59-TOPS/mm² PCM on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs|journal=IEEE Journal of Solid-State Circuits|volume=57 |issue=4 |pages=1027–1038|doi=10.1109/JSSC.2022.3140414|bibcode=2022IJSSC..57.1027K |s2cid=246417395 |issn=1558-173X|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)