Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Platonic solid
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Point in space=== For an arbitrary point in the space of a Platonic solid with circumradius ''R'', whose distances to the centroid of the Platonic solid and its ''n'' vertices are ''L'' and ''d<sub>i</sub>'' respectively, and <math display="block">S^{(2m)}_{[n]}= \frac 1n\sum_{i=1}^n d_i^{2m}</math>, we have<ref name=Mamuka >{{cite journal| last1= Meskhishvili |first1= Mamuka| date=2020|title=Cyclic Averages of Regular Polygons and Platonic Solids |journal= Communications in Mathematics and Applications|volume=11|pages=335β355|doi= 10.26713/cma.v11i3.1420|doi-broken-date= 1 November 2024|arxiv= 2010.12340|url= https://www.rgnpublications.com/journals/index.php/cma/article/view/1420/1065}}</ref> <math display="block">\begin{align} S^{(2)}_{[4]} = S^{(2)}_{[6]} = S^{(2)}_{[8]}= S^{(2)}_{[12]}= S^{(2)}_{[20]} &= R^2+L^2, \\[4px] S^{(4)}_{[4]} = S^{(4)}_{[6]} = S^{(4)}_{[8]}= S^{(4)}_{[12]}= S^{(4)}_{[20]} &= \left(R^2+L^2\right)^2 + \frac 43 R^2L^2, \\[4px] S^{(6)}_{[6]} = S^{(6)}_{[8]} = S^{(6)}_{[12]}= S^{(6)}_{[20]}&= \left(R^2+L^2\right)^3 + 4R^2L^2 \left(R^2+L^2\right), \\[4px] S^{(8)}_{[12]} = S^{(8)}_{[20]} &= \left(R^2+L^2\right)^4 + 8R^2L^2 \left(R^2+L^2\right)^2+\frac {16}{5} R^4L^4, \\[4px] S^{(10)}_{[12]} = S^{(10)}_{[20]} &= \left(R^2+L^2\right)^5 +\frac {40}{3}R^2L^2\left(R^2+L^2\right)^3+16R^4L^4\left(R^2+L^2\right). \end{align}</math> For all five Platonic solids, we have<ref name= Mamuka /> <math display="block">S^{(4)}_{[n]}+\frac {16}{9}R^4= \left(S^{(2)}_{[n]}+ \frac 23R^2\right)^2.</math> If ''d<sub>i</sub>'' are the distances from the ''n'' vertices of the Platonic solid to any point on its circumscribed sphere, then<ref name= Mamuka /> <math display="block">4\left(\sum_{i=1}^n d_i^2\right)^2=3n \sum_{i=1}^n d_i^4.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)